Inhaltsverzeichnis
Auswahl der wissenschaftlichen Literatur zum Thema „Face detection on thermal image“
Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an
Machen Sie sich mit den Listen der aktuellen Artikel, Bücher, Dissertationen, Berichten und anderer wissenschaftlichen Quellen zum Thema "Face detection on thermal image" bekannt.
Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.
Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.
Zeitschriftenartikel zum Thema "Face detection on thermal image"
Seo, Jongwoo, und In-Jeong Chung. „Face Liveness Detection Using Thermal Face-CNN with External Knowledge“. Symmetry 11, Nr. 3 (10.03.2019): 360. http://dx.doi.org/10.3390/sym11030360.
Der volle Inhalt der QuelleAlbar, Albar, Hendrick Hendrick und Rahmad Hidayat. „Segmentation Method for Face Modelling in Thermal Images“. Knowledge Engineering and Data Science 3, Nr. 2 (31.12.2020): 99. http://dx.doi.org/10.17977/um018v3i22020p99-105.
Der volle Inhalt der QuelleMa, Chao, Ngo Trung, Hideaki Uchiyama, Hajime Nagahara, Atsushi Shimada und Rin-ichiro Taniguchi. „Adapting Local Features for Face Detection in Thermal Image“. Sensors 17, Nr. 12 (27.11.2017): 2741. http://dx.doi.org/10.3390/s17122741.
Der volle Inhalt der QuelleKowalski, Marcin, und Krzysztof Mierzejewski. „Detection of 3D face masks with thermal infrared imaging and deep learning techniques“. Photonics Letters of Poland 13, Nr. 2 (30.06.2021): 22. http://dx.doi.org/10.4302/plp.v13i2.1091.
Der volle Inhalt der QuelleCho, Se, Na Baek, Min Kim, Ja Koo, Jong Kim und Kang Park. „Face Detection in Nighttime Images Using Visible-Light Camera Sensors with Two-Step Faster Region-Based Convolutional Neural Network“. Sensors 18, Nr. 9 (07.09.2018): 2995. http://dx.doi.org/10.3390/s18092995.
Der volle Inhalt der QuelleLatinović, Nikola, Tijana Vuković, Ranko Petrović, Miloš Pavlović, Marko Kadijević, Ilija Popadić und Mladen Veinović. „Implementation challenge and analysis of thermal image degradation on R-CNN face detection“. Telfor Journal 12, Nr. 2 (2020): 98–103. http://dx.doi.org/10.5937/telfor2002098l.
Der volle Inhalt der QuelleFitriyah, Hurriyatul, und Edita Rosana Widasari. „Face Detection of Thermal Images in Various Standing Body-Pose using Facial Geometry“. IJCCS (Indonesian Journal of Computing and Cybernetics Systems) 14, Nr. 4 (31.10.2020): 407. http://dx.doi.org/10.22146/ijccs.59672.
Der volle Inhalt der Quellevan Doremalen, Rob F. M., Jaap J. van Netten, Jeff G. van Baal, Miriam M. R. Vollenbroek-Hutten und Ferdinand van der Heijden. „Infrared 3D Thermography for Inflammation Detection in Diabetic Foot Disease: A Proof of Concept“. Journal of Diabetes Science and Technology 14, Nr. 1 (14.06.2019): 46–54. http://dx.doi.org/10.1177/1932296819854062.
Der volle Inhalt der QuelleBedoya-Echeverry, Sebastián, Hernán Belalcázar-Ramírez, Humberto Loaiza-Correa, Sandra Esperanza Nope-Rodríguez, Carlos Rafael Pinedo-Jaramillo und Andrés David Restrepo-Girón. „Detection of lies by facial thermal imagery analysis“. Revista Facultad de Ingeniería 26, Nr. 44 (25.01.2017): 45. http://dx.doi.org/10.19053/01211129.v26.n44.2017.5771.
Der volle Inhalt der QuelleKopaczka, Marcin, Lukas Breuer, Justus Schock und Dorit Merhof. „A Modular System for Detection, Tracking and Analysis of Human Faces in Thermal Infrared Recordings“. Sensors 19, Nr. 19 (24.09.2019): 4135. http://dx.doi.org/10.3390/s19194135.
Der volle Inhalt der QuelleDissertationen zum Thema "Face detection on thermal image"
Ribeiro, Ricardo Ferreira. „Face detection on infrared thermal image“. Master's thesis, Universidade de Aveiro, 2017. http://hdl.handle.net/10773/23551.
Der volle Inhalt der QuelleInfrared cameras or thermal imaging cameras are devices that use infrared radiation to capture an image. This kind of sensors are being developed for almost a century now. They started to be used in the military environment, but at that time it took too long to create a single image. Nowadays, the infrared sensors have reached a whole new technological level and are used for other than military purposes. These sensors are being used for face detection in this thesis. When comparing the use of thermal images regarding color images, it is possible to see advantages and limitations, such as capture images in total darkness and high price, respectively, which will be explored throughout this document. This work proposes the development or adaptation of several methods for face detection on infrared thermal images. The well known algorithm developed by Paul Viola and Michael Jones, using Haar feature-based cascade classi ers, is used to compare the traditional algorithms developed for visible light images when applied to thermal imaging. Three di erent algorithms for face detection are presented. Face segmentation is the rst step in these methods. A method for the segmentation and ltering of the face in the infrared thermal images resulting in a binary image is proposed. In the rst method, an edge detection algorithm is applied to the binary image and the face detection is based on these contours. In the second method, a template matching method is used for searching and nding the location of a template image with the shape of a human head in the binary image. In the last one, a matching algorithm is used. This algorithm correlates a template with the distance transform of the edge image. This algorithm incorporates edge orientation information resulting in the reduction of false detection and the cost variation is limited. The experimental results show that the proposed methods have promising outcome, but the second method is the most suitable for the performed experiments.
As camaras infravermelhas ou as camaras de imagem termica sao dispositivos que usam radiação infravermelha para capturar uma imagem. Este tipo de sensores estao a ser desenvolvidos há quase um século. Começaram a ser usados para fins militares, mas naquela época demorava demasiado tempo para criar uma única imagem. Hoje em dia, os sensores infravermelhos alcançaram um nível tecnológico totalmente novo e são usados para fins além de militares. Esses sensores estão ser usados para detecção facial nesta dissertação. Comparando o uso de imagens térmicas relativamente a imagens coloridas, é possível ver vantagens e limitações, tal como a captura de imagens na escuridão e o preço elevado, respectivamente, que serão exploradas durante este documento. Este trabalho propõe o desenvolvimento ou adaptação de vários métodos para a detecção facial em imagens térmicas. O conhecido algoritmo desenvolvido por Paul Viola e Michael Jones, que utiliza cascatas de classificadores de Haar baseado em características, é usado para comparar os algoritmos tradicionais desenvolvidos para imagens de luz visível quando aplicados a imagens térmicas. São apresentados três métodos diferentes para a detecção facial. A segmentação do rosto e o primeiro passo nestes métodos. E proposto um método para a segmentação e filtragem do rosto nas imagens térmicas que tem como resultado uma imagem binária. No primeiro método, é aplicado um algoritmo de detecção de contornos a imagem binária e a detecção facial é baseada nesses contornos. No segundo método, é usado um método de correspondência de padrões para pesquisar e encontrar a localização de uma imagem padrão com a forma da cabeça humana na imagem binária. No último, é usado um algoritmo de correspondência. Este algoritmo correlaciona um padrão com a transformada de distância da imagem de contornos. Este algoritmo incorpora informações de orientação de contornos que resulta na redução de falsas detecções e a variação do custo é limitada. Os resultados experimentais mostram que os métodos propostos têm resultados promissores, mas o segundo método é o mais adequado para as experiências realizadas.
Roman, Matej. „Automatizované měření teploty v boji proti COVID“. Master's thesis, Vysoké učení technické v Brně. Fakulta elektrotechniky a komunikačních technologií, 2021. http://www.nusl.cz/ntk/nusl-442439.
Der volle Inhalt der QuelleMahmood, Muhammad Tariq. „Face Detection by Image Discriminating“. Thesis, Blekinge Tekniska Högskola, Avdelningen för för interaktion och systemdesign, 2006. http://urn.kb.se/resolve?urn=urn:nbn:se:bth-4352.
Der volle Inhalt der QuelleSIPL, Mechatronics, GIST 1 Oryong-Dong, Buk-Gu, Gwangju, 500-712 South Korea tel. 0082-62-970-2997
Omar, Luma Qassam Abedalqader. „Face liveness detection under processed image attacks“. Thesis, Durham University, 2018. http://etheses.dur.ac.uk/12812/.
Der volle Inhalt der QuelleWall, Helene. „Context-Based Algorithm for Face Detection“. Thesis, Linköping University, Department of Science and Technology, 2005. http://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-4171.
Der volle Inhalt der QuelleFace detection has been a research area for more than ten years. It is a complex problem due to the high variability in faces and amongst faces; therefore it is not possible to extract a general pattern to be used for detection. This is what makes the face detection problem a challenge.
This thesis gives the reader a background to the face detection problem, where the two main approaches of the problem are described. A face detection algorithm is implemented using a context-based method in combination with an evolving neural network. The algorithm consists of two majors steps: detect possible face areas and within these areas detect faces. This method makes it possible to reduce the search space.
The performance of the algorithm is evaluated and analysed. There are several parameters that affect the performance; the feature extraction method, the classifier and the images used.
This work resulted in a face detection algorithm and the performance of the algorithm is evaluated and analysed. The analysis of the problems that occurred has provided a deeper understanding for the complexity of the face detection problem.
Yigit, Ahmet. „Thermal And Visible Band Image Fusion For Abandoned Object Detection“. Master's thesis, METU, 2010. http://etd.lib.metu.edu.tr/upload/3/12611720/index.pdf.
Der volle Inhalt der QuelleTan, Teewoon. „HUMAN FACE RECOGNITION BASED ON FRACTAL IMAGE CODING“. University of Sydney. Electrical and Information Engineering, 2004. http://hdl.handle.net/2123/586.
Der volle Inhalt der QuelleRondahl, Thomas. „Face Detection in Digital Imagery Using Computer Vision and Image Processing“. Thesis, Umeå universitet, Institutionen för datavetenskap, 2011. http://urn.kb.se/resolve?urn=urn:nbn:se:umu:diva-51406.
Der volle Inhalt der QuellePatel, Brindal A. „R-Eye| An image processing-based embedded system for face detection and tracking“. Thesis, California State University, Long Beach, 2016. http://pqdtopen.proquest.com/#viewpdf?dispub=10141532.
Der volle Inhalt der QuelleThe current project presents the development of R-Eye, a face detection and tracking system implemented as an embedded device based on the Arduino microcontroller. The system is programmed in Python using the Viola-Jones algorithm for image processing. Several experiments designed to measure and compare the performance of the system under various conditions show that the system performs well when used with an integrated camera, reaching a 93% face recognition accuracy for a clear face. The accuracy is lower when detecting a face with accessories, such as a pair of eyeglasses (80%), or when a low-resolution low-quality camera is used. Experimental results also show that the system is capable of detecting and tracking a face within a frame containing multiple faces.
Schwambach, Costa Vítor. „Optimization of a face detection algorithm for real-time mobile phone applications“. Universidade Federal de Pernambuco, 2009. https://repositorio.ufpe.br/handle/123456789/2335.
Der volle Inhalt der QuelleDesde equipamentos de vigillância por vídeo a câmeras digitais e telefones celulares, a detecção de rostos e uma funcionalidade que esta rapidamente ganhando peso no projeto de interfaces de usuario mais inteligentes e tornando a interação homem-maquina cada vez mais natural e intuitiva. Com isto em mente, fabricantes de chips estão embarcando esta tecnologia na sua nova geração de processadores de sinal de imagem (ISP) desenvolvidos especificamente para uso em aparelhos celulares. O foco deste trabalho foi analisar um algoritmo para detecção de rostos para suportar a definição da arquitetura mais adequada a ser usada na solução final. Um algoritmo inicial baseado na tecnica de Cascata de Caracteristicas Simples foi usado como base para este trabalho. O algoritmo inicial, como especificado, leva quase quarenta segundos para processar um unico quadro de imagem no processador alvo, tempo este que inviabilizaria o uso desta solução. Focando na implementação de um novo ISP, o algoritmo foi completamente reescrito, otimizado e propriamente mapeado na plataforma alvo, ao ponto onde um fator de aceleração de 167x foi atingido e uma imagem de pior caso agora leva menos de 250 milissegundos para ser processada. Este numero e ainda mais baixo se for considerada a media em um conjunto maior de imagens ou um vídeo, caindo para cerca de 100 milissegundos por quadro de imagem processado. Não obstante, performance não foi o unico alvo, tambem a quantidade de memoria necessaria foi dramaticamente reduzida. Isto tem um impacto direto na area de silicio requerida pelo circuito e conseq uentemente menores custos de producao e consumo de potência, fatores criticos em um sistema para aplicações moveis. E importante ressaltar que a qualidade não foi deixada de lado e em todas as otimizações realizadas, tomou-se o cuidado de verificar que a qualidade de detecção não tinha sido impactada. Este documento apresenta a pesquisa feita e os resultados obtidos. Começa por uma breve introdução ao assunto de Visão Computacional e aos desafios de projetar uma solução de detecção de rostos. Apos esta introdução, o algoritmo que serviu como base para este trabalho e apresentado juntamente com as otimizações mais relevantes ao nivel algoritmico para melhorar a performance. Na sequência, instruções customizadas desenvolvidas para acelerar a execução do algoritmo na solução final são apresentadas e discutidas
Bücher zum Thema "Face detection on thermal image"
Kawulok, Michal, M. Emre Celebi und Bogdan Smolka, Hrsg. Advances in Face Detection and Facial Image Analysis. Cham: Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-25958-1.
Der volle Inhalt der Quelle1950-, Ahuja Narendra, Hrsg. Face detection and gesture recognition for human-computer interaction. Boston: Kluwer Academic, 2001.
Den vollen Inhalt der Quelle findenSmolka, Bogdan, Emre Celebi und Michal Kawulok. Advances in Face Detection and Facial Image Analysis. Springer, 2018.
Den vollen Inhalt der Quelle findenAhuja, Narendra, und Ming-Hsuan Yang. Face Detection and Gesture Recognition for Human-Computer Interaction (The International Series in Video Computing). Springer, 2001.
Den vollen Inhalt der Quelle findenBuchteile zum Thema "Face detection on thermal image"
Silva, Gustavo, Rui Monteiro, André Ferreira, Pedro Carvalho und Luís Corte-Real. „Face Detection in Thermal Images with YOLOv3“. In Advances in Visual Computing, 89–99. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-33723-0_8.
Der volle Inhalt der QuelleForczmański, Paweł. „Human Face Detection in Thermal Images Using an Ensemble of Cascading Classifiers“. In Hard and Soft Computing for Artificial Intelligence, Multimedia and Security, 205–15. Cham: Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-48429-7_19.
Der volle Inhalt der QuelleKopaczka, Marcin, Özcan Özkan und Dorit Merhof. „Face Tracking and Respiratory Signal Analysis for the Detection of Sleep Apnea in Thermal Infrared Videos with Head Movement“. In New Trends in Image Analysis and Processing – ICIAP 2017, 163–70. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-70742-6_15.
Der volle Inhalt der QuelleKopaczka, Marcin, Jan Nestler und Dorit Merhof. „Face Detection in Thermal Infrared Images: A Comparison of Algorithm- and Machine-Learning-Based Approaches“. In Advanced Concepts for Intelligent Vision Systems, 518–29. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-70353-4_44.
Der volle Inhalt der QuelleChoraś, Ryszard S. „Thermal Face Recognition“. In Image Processing and Communications Challenges 7, 37–46. Cham: Springer International Publishing, 2015. http://dx.doi.org/10.1007/978-3-319-23814-2_5.
Der volle Inhalt der QuelleRihan, Jonathan, Pushmeet Kohli und Philip H. S. Torr. „OBJCUT for Face Detection“. In Computer Vision, Graphics and Image Processing, 576–84. Berlin, Heidelberg: Springer Berlin Heidelberg, 2006. http://dx.doi.org/10.1007/11949619_51.
Der volle Inhalt der QuelleForczmański, Paweł, und Anton Smoliński. „Eyes State Detection in Thermal Imaging“. In Image Processing and Communications, 22–29. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-31254-1_4.
Der volle Inhalt der QuelleKirdak, Varsha, und Sudhir Vegad. „Face Image Detection Methods: A Survey“. In Advances in Intelligent Systems and Computing, 209–16. Singapore: Springer Singapore, 2017. http://dx.doi.org/10.1007/978-981-10-5272-9_20.
Der volle Inhalt der QuelleAnisetti, Marco, Valerio Bellandi, Ernesto Damiani, Luigi Arnone und Benoit Rat. „A3FD: Accurate 3D Face Detection“. In Signal Processing for Image Enhancement and Multimedia Processing, 155–65. Boston, MA: Springer US, 2008. http://dx.doi.org/10.1007/978-0-387-72500-0_14.
Der volle Inhalt der QuelleWang, Chu, Xiaoqiang Li und Wenfeng Wang. „Image Fusion for Improving Thermal Human Face Image Recognition“. In Communications in Computer and Information Science, 417–27. Singapore: Springer Singapore, 2021. http://dx.doi.org/10.1007/978-981-16-2336-3_39.
Der volle Inhalt der QuelleKonferenzberichte zum Thema "Face detection on thermal image"
Ma, Chao, Ngo Thanh Trung, Hideaki Uchiyama, Hajime Nagahara, Atsushi Shimada und Rin-ichiro Taniguchi. „Mixed features for face detection in thermal image“. In The International Conference on Quality Control by Artificial Vision 2017, herausgegeben von Hajime Nagahara, Kazunori Umeda und Atsushi Yamashita. SPIE, 2017. http://dx.doi.org/10.1117/12.2266836.
Der volle Inhalt der QuelleWong, Wai Kit, Joe How Hui, Jalil Bin Md Desa, Nur Izzati Nadiah Binti Ishak, Azlan Bin Sulaiman und Yante Binti Mohd Nor. „Face detection in thermal imaging using head curve geometry“. In 2012 5th International Congress on Image and Signal Processing (CISP). IEEE, 2012. http://dx.doi.org/10.1109/cisp.2012.6469684.
Der volle Inhalt der QuelleHussien, M. Naeem, Mohd-Haris Lye, Mohammad Faizal Ahmad Fauzi, Tan Ching Seong und Sarina Mansor. „Comparative analysis of eyes detection on face thermal images“. In 2017 IEEE International Conference on Signal and Image Processing Applications (ICSIPA). IEEE, 2017. http://dx.doi.org/10.1109/icsipa.2017.8120641.
Der volle Inhalt der QuelleKwaśniewska, A., und J. Rumiński. „Face detection in image sequences using a portable thermal camera“. In 2016 Quantitative InfraRed Thermography. QIRT Council, 2016. http://dx.doi.org/10.21611/qirt.2016.071.
Der volle Inhalt der QuelleVukovic, Tijana, Ranko Petrovic, Milos Pavlovic und Srdan Stankovic. „Thermal Image Degradation Influence on R-CNN Face Detection Performance“. In 2019 27th Telecommunications Forum (TELFOR). IEEE, 2019. http://dx.doi.org/10.1109/telfor48224.2019.8971128.
Der volle Inhalt der QuelleKopaczka, Marcin, Justus Schock, Jan Nestler, Kevin Kielholz und Dorit Merhof. „A combined modular system for face detection, head pose estimation, face tracking and emotion recognition in thermal infrared images“. In 2018 IEEE International Conference on Imaging Systems and Techniques (IST). IEEE, 2018. http://dx.doi.org/10.1109/ist.2018.8577124.
Der volle Inhalt der QuelleTakahashi, Tsuyoshi, Bo Wu, Yoichi Kageyama, Makoto Nishida und Masaki Ishii. „A study of learning data size for automatic face area detection in sequential thermal images“. In 2015 IEEE 4th Global Conference on Consumer Electronics (GCCE). IEEE, 2015. http://dx.doi.org/10.1109/gcce.2015.7398530.
Der volle Inhalt der QuelleKopaczka, Marcin, Kemal Acar und Dorit Merhof. „Robust Facial Landmark Detection and Face Tracking in Thermal Infrared Images using Active Appearance Models“. In International Conference on Computer Vision Theory and Applications. SCITEPRESS - Science and Technology Publications, 2016. http://dx.doi.org/10.5220/0005716801500158.
Der volle Inhalt der QuelleZheng, Yufeng. „Face detection and eyeglasses detection for thermal face recognition“. In IS&T/SPIE Electronic Imaging, herausgegeben von Philip R. Bingham und Edmund Y. Lam. SPIE, 2012. http://dx.doi.org/10.1117/12.907123.
Der volle Inhalt der QuelleColmenarez, Antonio J., und Thomas S. Huang. „Frontal-view face detection“. In Visual Communications and Image Processing '95, herausgegeben von Lance T. Wu. SPIE, 1995. http://dx.doi.org/10.1117/12.206630.
Der volle Inhalt der QuelleBerichte der Organisationen zum Thema "Face detection on thermal image"
Duberstein, Corey A., Shari Matzner, Valerie I. Cullinan, Daniel J. Virden, Joshua R. Myers und Adam R. Maxwell. Automated Thermal Image Processing for Detection and Classification of Birds and Bats - FY2012 Annual Report. Office of Scientific and Technical Information (OSTI), September 2012. http://dx.doi.org/10.2172/1076723.
Der volle Inhalt der QuelleClausen, Jay, Susan Frankenstein, Jason Dorvee, Austin Workman, Blaine Morriss, Keran Claffey, Terrance Sobecki et al. Spatial and temporal variance of soil and meteorological properties affecting sensor performance—Phase 2. Engineer Research and Development Center (U.S.), September 2021. http://dx.doi.org/10.21079/11681/41780.
Der volle Inhalt der Quelle