Inhaltsverzeichnis
Auswahl der wissenschaftlichen Literatur zum Thema „Fabrication“
Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an
Machen Sie sich mit den Listen der aktuellen Artikel, Bücher, Dissertationen, Berichten und anderer wissenschaftlichen Quellen zum Thema "Fabrication" bekannt.
Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.
Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.
Zeitschriftenartikel zum Thema "Fabrication"
R., R., und W. Ritha. „A Fabrication Repertoire Replica Amidst Partisan Commerce Layaway Strategem And Infalllibity Cannibalizing Neutrosophic Fuzzy Number“. International Journal of Neutrosophic Science 24, Nr. 1 (2024): 196–207. http://dx.doi.org/10.54216/ijns.240118.
Der volle Inhalt der QuelleHao, Yongcun, Yanlong Wang, Yonghao Liu, Weizheng Yuan und Honglong Chang. „An SOI-based post-fabrication process for compliant MEMS devices“. Journal of Micromechanics and Microengineering 34, Nr. 4 (12.03.2024): 045005. http://dx.doi.org/10.1088/1361-6439/ad2f4b.
Der volle Inhalt der QuelleCoogan, Jeremiah, Candida R. Moss und Joseph A. Howley. „The Socioeconomics of Fabrication: Textuality, Authenticity, and Social Status in the Roman Mediterranean“. Arethusa 57, Nr. 2 (März 2024): 227–53. http://dx.doi.org/10.1353/are.2024.a934134.
Der volle Inhalt der QuelleSowrirajan, M., S. Vijayan, M. Arulraj und J. Sundaresan. „Metallurgical assessments on 316L stainless steel thin walled plate fabricated through GMAW based typical Wire Arc Additive Manufacturing“. YMER Digital 21, Nr. 02 (09.02.2022): 227–37. http://dx.doi.org/10.37896/ymer21.02/23.
Der volle Inhalt der QuelleBakar, Azrena Abu, Masahiro Nakajima, Chengzhi Hu, Hirotaka Tajima, Shoichi Maruyama und Toshio Fukuda. „Fabrication of 3D Photoresist Structure for Artificial Capillary Blood Vessel“. Journal of Robotics and Mechatronics 25, Nr. 4 (20.08.2013): 673–81. http://dx.doi.org/10.20965/jrm.2013.p0673.
Der volle Inhalt der QuelleDeisinger, Ulrike, Sabine Hamisch, Matthias Schumacher, Franzika Uhl, Rainer Detsch und Günter Ziegler. „Fabrication of Tailored Hydroxyapatite Scaffolds: Comparison between a Direct and an Indirect Rapid Prototyping Technique“. Key Engineering Materials 361-363 (November 2007): 915–18. http://dx.doi.org/10.4028/www.scientific.net/kem.361-363.915.
Der volle Inhalt der QuelleWahyuni, Wulan Tri, Budi Riza Putra, Achmad Fauzi, Desi Ramadhanti, Eti Rohaeti und Rudi Heryanto. „A Brief Review on Fabrication of Screen-Printed Carbon Electrode: Materials and Techniques“. Indo. J Chem. Res. 8, Nr. 3 (31.01.2021): 210–18. http://dx.doi.org/10.30598//ijcr.2021.7-wul.
Der volle Inhalt der QuelleWahyuni, Wulan Tri, Budi Riza Putra, Achmad Fauzi, Desi Ramadhanti, Eti Rohaeti und Rudi Heryanto. „A Brief Review on Fabrication of Screen-Printed Carbon Electrode: Materials and Techniques“. Indonesian Journal of Chemical Research 8, Nr. 3 (31.01.2021): 210–18. http://dx.doi.org/10.30598/ijcr.2021.8-wul.
Der volle Inhalt der QuelleSun, Yuting, Jiayu Ding, Xiaoyu Xia, Xiaohan Wang, Jianwen Xu, Shuqing Song, Dong Lan, Jie Zhao und Yang Yu. „Fabrication of airbridges with gradient exposure“. Applied Physics Letters 121, Nr. 7 (15.08.2022): 074001. http://dx.doi.org/10.1063/5.0102555.
Der volle Inhalt der QuelleXie, Ke Fei, Ke Fu Yao und Tian You Huang. „Influence of the Melting Temperature on the Fabrication of a Ti-Cu-Zr-Ni-Sn Bulk Metallic Glass“. Materials Science Forum 688 (Juni 2011): 413–18. http://dx.doi.org/10.4028/www.scientific.net/msf.688.413.
Der volle Inhalt der QuelleDissertationen zum Thema "Fabrication"
Rader, Nicolas Glen. „DESIGN [fabrication] BUILD“. Thesis, Massachusetts Institute of Technology, 2006. http://hdl.handle.net/1721.1/34425.
Der volle Inhalt der QuelleIncludes bibliographical references (p. 73-75).
DESIGN [fabrication] BUILD proposes a new relationship among the architect, homeowner, and fabricator/assembler through the use of parametric software in order to create a truly customizable prefabricated home. This customization is possible through the combination of the software with CNC machinery and a material yet to be fully explored by architects, honeycomb composite panel. The result is a kit of parts that is efficient in terms of time and cost in design, production, and assembly, it is offered as an improvement from contracted stick built construction.
by Nicolas Glen Rader.
M.Arch.
Garvey, Carrie Rosicky. „Foliage and Fabrication“. VCU Scholars Compass, 2006. http://scholarscompass.vcu.edu/etd/664.
Der volle Inhalt der QuelleHøvik, Jens. „Photonic Crystal Waveguide Fabrication“. Thesis, Norges teknisk-naturvitenskapelige universitet, Institutt for elektronikk og telekommunikasjon, 2012. http://urn.kb.se/resolve?urn=urn:nbn:no:ntnu:diva-19277.
Der volle Inhalt der QuelleMore, Daesha. „Microhotplate Sensor Array Fabrication“. Fogler Library, University of Maine, 2007. http://www.library.umaine.edu/theses/pdf/MoreD2007.pdf.
Der volle Inhalt der QuelleHan, Sarah (Sarah J. ). „Biologically inspired digital fabrication“. Thesis, Massachusetts Institute of Technology, 2013. http://hdl.handle.net/1721.1/85422.
Der volle Inhalt der QuelleCataloged from PDF version of thesis.
Includes bibliographical references (pages 37-40).
Objects and systems in nature are models for the practice of sustainable design and fabrication. From trees to bones, natural systems are characterized by the constant interplay of creation, environmental response, and analysis of current structural constituents, as part of a larger dynamic system. In contrast, traditional methods of digital design and fabrication are characterized by a linear progression of three main stages: modeling (digital generation in the digital domain), analysis (digital mapping of the physical domain), and fabrication (physical generation of the digital domain). Moving towards a system process where modeling, analysis, and fabrication are integrated together for the development of a dynamic process will transform traditional fabrication technology and bring about the creation of sustainable and more efficient synthetic environments. Integration of modeling, analysis, and fabrication into one fluid process requires the development of a fabrication platform with capabilities for real time control. This thesis explores and investigates the creation of a framework for real time control of industrial robotic arms as part of a multipurpose fabrication platform.
by Sarah Han.
M. Eng.
Hsu, Charles Heng-Yuan 1967. „Silicon microaccelerometer fabrication technologies“. Thesis, Massachusetts Institute of Technology, 1997. http://hdl.handle.net/1721.1/43545.
Der volle Inhalt der QuelleIncludes bibliographical references (leaves 275-282).
by Charles Heng-Yuan Hsu.
Ph.D.
Li, Guixin. „Superlens design and fabrication“. HKBU Institutional Repository, 2009. http://repository.hkbu.edu.hk/etd_ra/1066.
Der volle Inhalt der QuelleXia, Sijing. „Fabrication of protein nanostructures“. Thesis, University of Sheffield, 2015. http://etheses.whiterose.ac.uk/10126/.
Der volle Inhalt der QuelleRUBERTO, FRANCESCO. „Fablabs to transform the Italian Industry: The Case of the Fablabs Community“. Doctoral thesis, Università degli studi di Pavia, 2017. http://hdl.handle.net/11571/1220438.
Der volle Inhalt der QuelleThis research studies the case of Fablabs community helping the Italian industry in the process of innovation and growth. This case is representative of how entrepreneurs engage in Fablab digital fabrication technologies which allow to make almost anything and optimizing time and production cost. The number of entrepreneurs in Italy using Fablab services is exploding. However, while entrepreneurs in the main centers of innovation, such as Silicon Valley, have crucial social, cultural, economic, and material resources to build high-impact companies, these resources are often not present in moderate innovators countries. Those resources are defined as innovation infrastructures, stable and dependable resources necessary to systematically conduct technology innovation activities. Entrepreneurs in moderate innovators countries have a double challenge of excelling at their company, and using innovation infrastructures such as Fablabs. This research analyzes how Fablabs can facilitate the innovation activities of the Italian industries, reviewing the case of Fablabs who experience success in providing services to companies. To obtain useful data that match the research objectives, this study use a Focus group interview method. The questions are open-ended, which means that during the interviews, the actual questions may change according to the responses of the interviewees. I depended on triangulation as a means of ensuring construct validity. Data triangulation involves collecting data from interviews, observations, and document analysis. The findings will contribute to understanding the role that Fablabs play for the Italian industry, explaining how digital fabrication technologies can help Italian companies to be more competitive. Keywords: Fablab, Italian industry, MIT, Digital Fabrication, Neil Gershenfeld, case study, Silicon Valley.
Chen, Xiang. „Making Fabrication Real: Fabrication for Real Usage, with Real Objects, by Real People“. Research Showcase @ CMU, 2017. http://repository.cmu.edu/dissertations/1139.
Der volle Inhalt der QuelleBücher zum Thema "Fabrication"
Petersen, Paulann. Fabrication. Portland, Or: 26 Books, 1996.
Den vollen Inhalt der Quelle findenC, Oakley, Green V, Sutcliffe C und City and Guilds of London Institute., Hrsg. Fabrication. Cheltenham: Stam press, 1987.
Den vollen Inhalt der Quelle findenPetersen, Paulann. Fabrication. Portland, Or: 26 Books, 1996.
Den vollen Inhalt der Quelle findenWilliams, Kim, Hrsg. Digital Fabrication. Basel: Springer Basel, 2012. http://dx.doi.org/10.1007/978-3-0348-0582-7.
Der volle Inhalt der QuelleYatsui, Takashi. Nanophotonic Fabrication. Berlin, Heidelberg: Springer Berlin Heidelberg, 2012. http://dx.doi.org/10.1007/978-3-642-24172-7.
Der volle Inhalt der QuelleB, Bentz, Longeot H und Jourdan L, Hrsg. Fabrication industrielle. Paris: Dunod, 1985.
Den vollen Inhalt der Quelle findenShimizu, Gordon T. Electronic fabrication. Albany, N.Y: Delmar Publishers, 1986.
Den vollen Inhalt der Quelle findenPasolini, Pier Paolo. Fabrication =: Affabulazione. London: Oberon Books, 2010.
Den vollen Inhalt der Quelle findenInstitute, Welding, Hrsg. Fabrication: A review of welding and fabrication worldwide. Abington: Welding Institute, 1986.
Den vollen Inhalt der Quelle findenInstitute, Welding, Hrsg. Fabrication: A review of welding and fabrication worldwide. Abington: Welding Institute, 1987.
Den vollen Inhalt der Quelle findenBuchteile zum Thema "Fabrication"
Pelleg, Joshua. „Fabrication“. In Mechanical Properties of Silicon Based Compounds: Silicides, 13–16. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-22598-8_3.
Der volle Inhalt der QuelleGerman, Randall M. „Fabrication“. In Particulate Composites, 225–80. Cham: Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-29917-4_7.
Der volle Inhalt der QuelleChamberlain, M. R. „Fabrication“. In Dictionary of Converting, 110–69. Dordrecht: Springer Netherlands, 1992. http://dx.doi.org/10.1007/978-94-011-2266-5_4.
Der volle Inhalt der QuelleVeendrick, Harry. „Fabrication“. In Bits on Chips, 167–87. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-76096-4_10.
Der volle Inhalt der QuelleFrigeni, Fabrizio. „Fabrication“. In Industrial Robotics Control, 537–51. Berkeley, CA: Apress, 2022. http://dx.doi.org/10.1007/978-1-4842-8989-1_19.
Der volle Inhalt der QuelleCubitt, Sean. „Fabrication“. In Emerging Digital Spaces in Contemporary Society, 207–18. London: Palgrave Macmillan UK, 2010. http://dx.doi.org/10.1057/9780230299047_34.
Der volle Inhalt der QuelleBredella, Nathalie. „Fabrication“. In The Architectural Imagination at the Digital Turn, 120–44. London: Routledge, 2022. http://dx.doi.org/10.4324/9781003189527-6.
Der volle Inhalt der QuelleOtto, Ulf. „Fabrication“. In The Theater of Electricity, 117–53. Stuttgart: J.B. Metzler, 2023. http://dx.doi.org/10.1007/978-3-476-05961-1_4.
Der volle Inhalt der QuelleHarmon, Brendan. „Fabrication“. In Computational Design for Landscape Architects, 183–99. New York: Routledge, 2024. http://dx.doi.org/10.4324/9781003354376-18.
Der volle Inhalt der QuelleWilliams, Kim. „Digital Fabrication“. In Digital Fabrication, 407–8. Basel: Springer Basel, 2012. http://dx.doi.org/10.1007/978-3-0348-0582-7_1.
Der volle Inhalt der QuelleKonferenzberichte zum Thema "Fabrication"
Reiser, Susan L., und Rebecca F. Bruce. „Fabrication“. In the 40th ACM technical symposium. New York, New York, USA: ACM Press, 2009. http://dx.doi.org/10.1145/1508865.1509001.
Der volle Inhalt der QuelleCamilo, Gilberto M. „Mechanical properties of chalcogenide glasses: a review“. In Photonics Fabrication Europe, herausgegeben von Hans G. Limberger und M. John Matthewson. SPIE, 2003. http://dx.doi.org/10.1117/12.488150.
Der volle Inhalt der QuelleCremona, Marco, Stefano Pelli, Joao A. M. Pereira und Giancarlo C. Righini. „Fabrication and characterization of optical waveguides on LiF by ion beam irradiation“. In Photonics Fabrication Europe, herausgegeben von Giancarlo C. Righini. SPIE, 2003. http://dx.doi.org/10.1117/12.472700.
Der volle Inhalt der QuelleDiemeer, Mart B. J. „Hybrid optical waveguide devices based on polymers and silica“. In Photonics Fabrication Europe, herausgegeben von Alfred Driessen, Roel G. Baets, John G. McInerney und Ephraim Suhir. SPIE, 2003. http://dx.doi.org/10.1117/12.472701.
Der volle Inhalt der QuelleSzekely, Vladimir. „Algorithmic solutions for thermal and electrostatic simulation of MEMS“. In Photonics Fabrication Europe, herausgegeben von Uwe F. W. Behringer, Bernard Courtois, Ali M. Khounsary und Deepak G. Uttamchandani. SPIE, 2003. http://dx.doi.org/10.1117/12.472702.
Der volle Inhalt der QuelleBernard, Pierre, Nathalie Gregoire und Ghislain Lafrance. „Automated laser trimming for ultralow error function GFF“. In Photonics Fabrication Europe, herausgegeben von Valerio Pruneri, Robert P. Dahlgren und Gregory M. Sanger. SPIE, 2003. http://dx.doi.org/10.1117/12.472703.
Der volle Inhalt der QuelleZhao, Luping, Koon G. Neoh, Sock W. Ng und En T. Kang. „Photo-induced reaction of polyaniline with viologen in the solid state“. In Photonics Fabrication Europe, herausgegeben von Yoseph Bar-Cohen. SPIE, 2003. http://dx.doi.org/10.1117/12.472705.
Der volle Inhalt der QuelleFonjallaz, Pierre-Yves, Ola Gunnarsson, Mikhail Popov, Walter Margulis, Ingemar Petermann, David Berlemont und Fredrik Carlsson. „Advanced components for microwave photonics“. In Photonics Fabrication Europe, herausgegeben von Valerio Pruneri, Robert P. Dahlgren und Gregory M. Sanger. SPIE, 2003. http://dx.doi.org/10.1117/12.472706.
Der volle Inhalt der QuelleHamacher, Michael, Ute Troppenz, Helmut Heidrich und Dominik G. Rabus. „Active ring resonators based on GaInAsP/InP“. In Photonics Fabrication Europe, herausgegeben von Alfred Driessen, Roel G. Baets, John G. McInerney und Ephraim Suhir. SPIE, 2003. http://dx.doi.org/10.1117/12.472816.
Der volle Inhalt der QuelleSchiattone, Francesco, Stefano Bonino, Luigi Gobbi, Angelamaria Groppi, Marco Marazzi und Maurizio Musio. „Low cost, small form factor, and integration as the key features for the optical component industry takeoff“. In Photonics Fabrication Europe, herausgegeben von Giancarlo C. Righini. SPIE, 2003. http://dx.doi.org/10.1117/12.472817.
Der volle Inhalt der QuelleBerichte der Organisationen zum Thema "Fabrication"
Blaedel, K. L. Fabrication Technology. Office of Scientific and Technical Information (OSTI), März 1993. http://dx.doi.org/10.2172/10194530.
Der volle Inhalt der QuelleAuthor, Not Given. Cohesive ceramic fabrication. Office of Scientific and Technical Information (OSTI), Januar 1989. http://dx.doi.org/10.2172/7169030.
Der volle Inhalt der QuelleLevesque, Stephen. Nuclear Fabrication Consortium. Office of Scientific and Technical Information (OSTI), April 2013. http://dx.doi.org/10.2172/1072951.
Der volle Inhalt der QuelleRajic, S. Micromechanical Structures Fabrication. Office of Scientific and Technical Information (OSTI), Mai 2001. http://dx.doi.org/10.2172/814244.
Der volle Inhalt der QuelleGibson, Joshem, Kelly Bingham, Thomas Smouse und Frank Lopez. Vessel Fabrication Overview. Office of Scientific and Technical Information (OSTI), Juni 2021. http://dx.doi.org/10.2172/1798108.
Der volle Inhalt der QuelleWong, Amy. Glovebox Fabrication Pictures. Office of Scientific and Technical Information (OSTI), November 2023. http://dx.doi.org/10.2172/2228625.
Der volle Inhalt der QuelleViola, M., T. Brown, P. Heitzenroeder, F. Malinowski, W. Reiersen, L. Sutton, P. Goranson et al. NCSX Vacuum Vessel Fabrication. Office of Scientific and Technical Information (OSTI), Oktober 2005. http://dx.doi.org/10.2172/899581.
Der volle Inhalt der QuelleEric L. Shaber und Bradley J Schrader. MOX Fabrication Isolation Considerations. Office of Scientific and Technical Information (OSTI), August 2005. http://dx.doi.org/10.2172/911246.
Der volle Inhalt der QuelleBourell, D. L., J. J. Beaman und Jr. Solid Freeform Fabrication Proceedings. Fort Belvoir, VA: Defense Technical Information Center, August 2001. http://dx.doi.org/10.21236/ada400355.
Der volle Inhalt der QuelleJL Bump und RF Luther. Biaxial Creep Specimen Fabrication. Office of Scientific and Technical Information (OSTI), Februar 2006. http://dx.doi.org/10.2172/884675.
Der volle Inhalt der Quelle