Inhaltsverzeichnis
Auswahl der wissenschaftlichen Literatur zum Thema „Extremal dependence modeling“
Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an
Machen Sie sich mit den Listen der aktuellen Artikel, Bücher, Dissertationen, Berichten und anderer wissenschaftlichen Quellen zum Thema "Extremal dependence modeling" bekannt.
Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.
Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.
Zeitschriftenartikel zum Thema "Extremal dependence modeling"
Barro, Diakarya. „Extremal Dependence Modeling with Spatial and Survival Distributions“. Journal of Mathematics Research 9, Nr. 1 (23.01.2017): 127. http://dx.doi.org/10.5539/jmr.v9n1p127.
Der volle Inhalt der QuelleHuser, Raphaël, und Jennifer L. Wadsworth. „Modeling Spatial Processes with Unknown Extremal Dependence Class“. Journal of the American Statistical Association 114, Nr. 525 (28.06.2018): 434–44. http://dx.doi.org/10.1080/01621459.2017.1411813.
Der volle Inhalt der QuelleMallam, Hassane Abba, Natatou Dodo Moutari, Barro Diakarya und Saley Bisso. „Extremal Copulas and Tail Dependence in Modeling Stochastic Financial Risk“. European Journal of Pure and Applied Mathematics 14, Nr. 3 (05.08.2021): 1057–81. http://dx.doi.org/10.29020/nybg.ejpam.v14i3.3951.
Der volle Inhalt der QuelleApputhurai, P., und A. G. Stephenson. „Accounting for uncertainty in extremal dependence modeling using Bayesian model averaging techniques“. Journal of Statistical Planning and Inference 141, Nr. 5 (Mai 2011): 1800–1807. http://dx.doi.org/10.1016/j.jspi.2010.11.038.
Der volle Inhalt der QuelleRessel, Paul. „Stable tail dependence functions – some basic properties“. Dependence Modeling 10, Nr. 1 (01.01.2022): 225–35. http://dx.doi.org/10.1515/demo-2022-0114.
Der volle Inhalt der QuelleChen, Zaoli, und Gennady Samorodnitsky. „Extremal clustering under moderate long range dependence and moderately heavy tails“. Stochastic Processes and their Applications 145 (März 2022): 86–116. http://dx.doi.org/10.1016/j.spa.2021.12.001.
Der volle Inhalt der QuelleOlinda, R. A., J. Blanchet, C. A. C. dos Santos, V. A. Ozaki und P. J. Ribeiro Jr. „Spatial extremes modeling applied to extreme precipitation data in the state of Paraná“. Hydrology and Earth System Sciences Discussions 11, Nr. 11 (17.11.2014): 12731–64. http://dx.doi.org/10.5194/hessd-11-12731-2014.
Der volle Inhalt der QuelleLi, Jiayi, Zhiyan Cai, Yixuan Liu und Chengxiu Ling. „Extremal Analysis of Flooding Risk and Its Catastrophe Bond Pricing“. Mathematics 11, Nr. 1 (27.12.2022): 114. http://dx.doi.org/10.3390/math11010114.
Der volle Inhalt der QuelleSaunina, A. Yu, V. R. Nikitenko, A. A. Chistyakov, M. A. Zvaizgne, A. R. Tameev und A. E. Aleksandrov. „Analytic Modeling of the of J–V Characteristics of Quantum Dot-Based Photovoltaic Cells“. International Journal of Nanoscience 18, Nr. 03n04 (02.04.2019): 1940083. http://dx.doi.org/10.1142/s0219581x19400830.
Der volle Inhalt der QuelleFerreira, Helena, und Marta Ferreira. „The stopped clock model“. Dependence Modeling 10, Nr. 1 (01.01.2022): 48–57. http://dx.doi.org/10.1515/demo-2022-0101.
Der volle Inhalt der QuelleDissertationen zum Thema "Extremal dependence modeling"
Kereszturi, Monika. „Assessing and modelling extremal dependence in spatial extremes“. Thesis, Lancaster University, 2017. http://eprints.lancs.ac.uk/86369/.
Der volle Inhalt der QuelleLecei, Ivan [Verfasser]. „Modelling extremal dependence / Ivan Lecei“. Ulm : Universität Ulm, 2018. http://d-nb.info/1173249745/34.
Der volle Inhalt der QuelleJohnson, Jill Suzanne. „"Modelling Dependence in Extreme Environmental Events"“. Thesis, University of Newcastle upon Tyne, 2010. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.525050.
Der volle Inhalt der QuelleNavarrete, Miguel A. Ancona. „Dependence modelling and spatial prediction for extreme values“. Thesis, Lancaster University, 2000. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.369658.
Der volle Inhalt der QuelleEriksson, Kristofer. „Risk Measures and Dependence Modeling in Financial Risk Management“. Thesis, Umeå universitet, Institutionen för fysik, 2014. http://urn.kb.se/resolve?urn=urn:nbn:se:umu:diva-85185.
Der volle Inhalt der QuelleSingh, Abhay Kumar. „Modelling Extreme Market Risk - A Study of Tail Related Risk Measures“. Thesis, Edith Cowan University, Research Online, Perth, Western Australia, 2011. https://ro.ecu.edu.au/theses/417.
Der volle Inhalt der QuelleBoulin, Alexis. „Partitionnement des variables de séries temporelles multivariées selon la dépendance de leurs extrêmes“. Electronic Thesis or Diss., Université Côte d'Azur, 2024. http://www.theses.fr/2024COAZ5039.
Der volle Inhalt der QuelleIn a wide range of applications, from climate science to finance, extreme events with a non-negligible probability can occur, leading to disastrous consequences. Extremes in climatic events such as wind, temperature, and precipitation can profoundly impact humans and ecosystems, resulting in events like floods, landslides, or heatwaves. When the focus is on studying variables measured over time at numerous specific locations, such as the previously mentioned variables, partitioning these variables becomes essential to summarize and visualize spatial trends, which is crucial in the study of extreme events. This thesis explores several models and methods for partitioning the variables of a multivariate stationary process, focusing on extreme dependencies.Chapter 1 introduces the concepts of modeling dependence through copulas, which are fundamental for extreme dependence. The notion of regular variation, essential for studying extremes, is introduced, and weakly dependent processes are discussed. Partitioning is examined through the paradigms of separation-proximity and model-based clustering. Non-asymptotic analysis is also addressed to evaluate our methods in fixed dimensions.Chapter 2 study the dependence between maximum values is crucial for risk analysis. Using the extreme value copula function and the madogram, this chapter focuses on non-parametric estimation with missing data. A functional central limit theorem is established, demonstrating the convergence of the madogram to a tight Gaussian process. Formulas for asymptotic variance are presented, illustrated by a numerical study.Chapter 3 proposes asymptotically independent block (AI-block) models for partitioning variables, defining clusters based on the independence of maxima. An algorithm is introduced to recover clusters without specifying their number in advance. Theoretical efficiency of the algorithm is demonstrated, and a data-driven parameter selection method is proposed. The method is applied to neuroscience and environmental data, showcasing its potential.Chapter 4 adapts partitioning techniques to analyze composite extreme events in European climate data. Sub-regions with dependencies in extreme precipitation and wind speed are identified using ERA5 data from 1979 to 2022. The obtained clusters are spatially concentrated, offering a deep understanding of the regional distribution of extremes. The proposed methods efficiently reduce data size while extracting critical information on extreme events.Chapter 5 proposes a new estimation method for matrices in a latent factor linear model, where each component of a random vector is expressed by a linear equation with factors and noise. Unlike classical approaches based on joint normality, we assume factors are distributed according to standard Fréchet distributions, allowing a better description of extreme dependence. An estimation method is proposed, ensuring a unique solution under certain conditions. An adaptive upper bound for the estimator is provided, adaptable to dimension and the number of factors
Ayari, Samia. „Nonparametric estimation of the dependence function for multivariate extreme value distributions“. Thesis, Aix-Marseille, 2016. http://www.theses.fr/2016AIXM4078.
Der volle Inhalt der QuelleIn this thesis, we investigate the nonparametric estimation of the dependence function for multivariate extreme value distributions. Firstly, we assume independent and identically distributed random variables (i.i.d). Several nonparametric estimators are compared for a trivariate dependence function of logistic type in two different cases. In a first analysis, we suppose that marginal functions are generalized extreme value distributions. In a second investigation, we substitute the marginal function by the empirical distribution function. Monte Carlo simulations show that the Gudendorf-Segers (Gudendorf and Segers, 2011) estimator outperforms the other estimators for different sample sizes. Secondly, we drop the i.i.d assumption as it’s not verified in time series analysis. Considering the univariate framework, we examine the extremal behavior of a stationary Gaussian autoregressive process. In the multivariate setting, we prove the asymptotic consistency of the Pickands dependence function estimator. This theoretical finding is confirmed by empirical investigations in the asymptotic independence case as well as the asymptotic dependence case. Finally, the Gudendorf-Segers estimator is used to model the dependence structure of extreme ozone concentrations in locations that record several exceedances for both guideline and limit values of the Tunisian air quality standard NT.106.04
Kyselá, Eva. „Modelling portfolios with heavy-tailed risk factors“. Master's thesis, Vysoká škola ekonomická v Praze, 2015. http://www.nusl.cz/ntk/nusl-264017.
Der volle Inhalt der QuelleSchulz, Thorsten [Verfasser], Matthias [Akademischer Betreuer] [Gutachter] Scherer, Griselda [Gutachter] Deelstra und Ralf [Gutachter] Werner. „Stochastic dependencies in derivative pricing: Decoupled BNS-volatility, sequential modeling of jumps, and extremal WWR / Thorsten Schulz ; Gutachter: Matthias Scherer, Griselda Deelstra, Ralf Werner ; Betreuer: Matthias Scherer“. München : Universitätsbibliothek der TU München, 2017. http://d-nb.info/1147566003/34.
Der volle Inhalt der QuelleBücher zum Thema "Extremal dependence modeling"
Gao, Yanhong, und Deliang Chen. Modeling of Regional Climate over the Tibetan Plateau. Oxford University Press, 2017. http://dx.doi.org/10.1093/acrefore/9780190228620.013.591.
Der volle Inhalt der QuelleBuchteile zum Thema "Extremal dependence modeling"
Ortego, María I., Juan J. Egozcue und Raimon Tolosana-Delgado. „Modeling Extremal Dependence Using Copulas. Application to Rainfall Data“. In Lecture Notes in Earth System Sciences, 53–56. Berlin, Heidelberg: Springer Berlin Heidelberg, 2013. http://dx.doi.org/10.1007/978-3-642-32408-6_13.
Der volle Inhalt der QuellePraprom, Chakorn, und Songsak Sriboonchitta. „Extreme Value Copula Analysis of Dependences between Exchange Rates and Exports of Thailand“. In Modeling Dependence in Econometrics, 187–99. Cham: Springer International Publishing, 2014. http://dx.doi.org/10.1007/978-3-319-03395-2_12.
Der volle Inhalt der QuelleBoonyanuphong, Phattanan, und Songsak Sriboonchitta. „An Analysis of Volatility and Dependence between Rubber Spot and Futures Prices Using Copula-Extreme Value Theory“. In Modeling Dependence in Econometrics, 431–44. Cham: Springer International Publishing, 2014. http://dx.doi.org/10.1007/978-3-319-03395-2_27.
Der volle Inhalt der QuelleKaewkheaw, Mutita, Pisit Leeahtam und Chukiat Chaiboosri. „An Analysis of Relationship between Gold Price and U.S. Dollar Index by Using Bivariate Extreme Value Copulas“. In Modeling Dependence in Econometrics, 455–62. Cham: Springer International Publishing, 2014. http://dx.doi.org/10.1007/978-3-319-03395-2_29.
Der volle Inhalt der QuelleColes, Stuart. „Extremes of Dependent Sequences“. In An Introduction to Statistical Modeling of Extreme Values, 92–104. London: Springer London, 2001. http://dx.doi.org/10.1007/978-1-4471-3675-0_5.
Der volle Inhalt der QuelleTaylor, John, und Jay Larson. „Resolution Dependence in Modeling Extreme Weather Events“. In Computational Science — ICCS 2001, 204–11. Berlin, Heidelberg: Springer Berlin Heidelberg, 2001. http://dx.doi.org/10.1007/3-540-45545-0_29.
Der volle Inhalt der QuelleWeissman, Ishay. „On Some Dependence Measures for Multivariate Extreme Value Distributions“. In Advances in Mathematical and Statistical Modeling, 171–80. Boston: Birkhäuser Boston, 2008. http://dx.doi.org/10.1007/978-0-8176-4626-4_12.
Der volle Inhalt der Quelle„Nonparametric Estimation of Extremal Dependence Anna Kiriliouk, Johan Segers, and Michał Warchoł“. In Extreme Value Modeling and Risk Analysis, 373–96. Chapman and Hall/CRC, 2016. http://dx.doi.org/10.1201/b19721-21.
Der volle Inhalt der QuelleSmith, Elizabeth L., und David Walshaw. „Modelling Bivariate Extremes in a Region“. In Bayesian Statistics 7, 681–90. Oxford University PressOxford, 2003. http://dx.doi.org/10.1093/oso/9780198526155.003.0048.
Der volle Inhalt der Quelle„Extreme Dependence Models“. In Extreme Value Modeling and Risk Analysis, 345–72. Chapman and Hall/CRC, 2016. http://dx.doi.org/10.1201/b19721-20.
Der volle Inhalt der QuelleKonferenzberichte zum Thema "Extremal dependence modeling"
Towe, Ross, Emma Eastoe, Jonathan Tawn, Yanyun Wu und Philip Jonathan. „The Extremal Dependence of Storm Severity, Wind Speed and Surface Level Pressure in the Northern North Sea“. In ASME 2013 32nd International Conference on Ocean, Offshore and Arctic Engineering. American Society of Mechanical Engineers, 2013. http://dx.doi.org/10.1115/omae2013-10154.
Der volle Inhalt der Quelle„Evaluating extremal dependence in stock markets using Extreme Value Theory“. In 19th International Congress on Modelling and Simulation. Modelling and Simulation Society of Australia and New Zealand (MSSANZ), Inc., 2011. http://dx.doi.org/10.36334/modsim.2011.d6.singh2.
Der volle Inhalt der QuelleMcDonald, Andrew, Pang-Ning Tan und Lifeng Luo. „COMET Flows: Towards Generative Modeling of Multivariate Extremes and Tail Dependence“. In Thirty-First International Joint Conference on Artificial Intelligence {IJCAI-22}. California: International Joint Conferences on Artificial Intelligence Organization, 2022. http://dx.doi.org/10.24963/ijcai.2022/462.
Der volle Inhalt der QuelleWada, Ryota, Philip Jonathan, Takuji Waseda und Shejun Fan. „Estimating Extreme Waves in the Gulf of Mexico Using a Simple Spatial Extremes Model“. In ASME 2019 38th International Conference on Ocean, Offshore and Arctic Engineering. American Society of Mechanical Engineers, 2019. http://dx.doi.org/10.1115/omae2019-95442.
Der volle Inhalt der QuelleVanem, Erik, Øystein Lande und Elias Fekhari. „A Simulation Study on the Usefulness of the Bernstein Copula for Statistical Modeling of Metocean Variables“. In ASME 2024 43rd International Conference on Ocean, Offshore and Arctic Engineering. American Society of Mechanical Engineers, 2024. http://dx.doi.org/10.1115/omae2024-121159.
Der volle Inhalt der QuelleBarbariol, Francesco, Alvise Benetazzo, Filippo Bergamasco, Sandro Carniel und Mauro Sclavo. „Stochastic Space-Time Extremes of Wind Sea States: Validation and Modeling“. In ASME 2014 33rd International Conference on Ocean, Offshore and Arctic Engineering. American Society of Mechanical Engineers, 2014. http://dx.doi.org/10.1115/omae2014-23997.
Der volle Inhalt der QuelleWada, Ryota, Philip Jonathan und Takuji Waseda. „Spatial Features of Extreme Waves in Gulf of Mexico“. In ASME 2020 39th International Conference on Ocean, Offshore and Arctic Engineering. American Society of Mechanical Engineers, 2020. http://dx.doi.org/10.1115/omae2020-19190.
Der volle Inhalt der QuelleYu, Hang, Zheng Choo, Justin Dauwels, Philip Jonathan und Qiao Zhou. „Modeling spatially-dependent extreme events with Markov random field priors“. In 2012 IEEE International Symposium on Information Theory - ISIT. IEEE, 2012. http://dx.doi.org/10.1109/isit.2012.6283503.
Der volle Inhalt der QuelleVanem, Erik. „Stochastic Models for Long-Term Prediction of Extreme Waves: A Literature Survey“. In ASME 2010 29th International Conference on Ocean, Offshore and Arctic Engineering. ASMEDC, 2010. http://dx.doi.org/10.1115/omae2010-20076.
Der volle Inhalt der QuelleMackay, E. B. L., C. J. R. Murphy-Barltrop und P. Jonathan. „The SPAR Model: A New Paradigm for Multivariate Extremes. Application to Joint Distributions of Metocean Variables“. In ASME 2024 43rd International Conference on Ocean, Offshore and Arctic Engineering. American Society of Mechanical Engineers, 2024. http://dx.doi.org/10.1115/omae2024-130932.
Der volle Inhalt der QuelleBerichte der Organisationen zum Thema "Extremal dependence modeling"
Furman, Alex, Jan Hopmans, Shmuel Assouline, Jirka Simunek und Jim Richards. Soil Environmental Effects on Root Growth and Uptake Dynamics for Irrigated Systems. United States Department of Agriculture, Februar 2011. http://dx.doi.org/10.32747/2011.7592118.bard.
Der volle Inhalt der QuelleOliynyk, Kateryna, und Matteo Ciantia. Application of a finite deformation multiplicative plasticity model with non-local hardening to the simulation of CPTu tests in a structured soil. University of Dundee, Dezember 2021. http://dx.doi.org/10.20933/100001230.
Der volle Inhalt der Quelle