Inhaltsverzeichnis
Auswahl der wissenschaftlichen Literatur zum Thema „Extraction uranium“
Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an
Machen Sie sich mit den Listen der aktuellen Artikel, Bücher, Dissertationen, Berichten und anderer wissenschaftlichen Quellen zum Thema "Extraction uranium" bekannt.
Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.
Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.
Zeitschriftenartikel zum Thema "Extraction uranium"
Borts, B., S. Ivanova, I. Koliabina, G. Lysychenko und V. Tkachenko. „Supercritical Extraction by Carbon Dioxide of Uranium from Ore Concentrates and Low-Enriched Ores of Tailing“. Nuclear and Radiation Safety, Nr. 2(70) (20.05.2016): 56–60. http://dx.doi.org/10.32918/nrs.2016.2(70).12.
Der volle Inhalt der QuelleYang, Xiaoying, Mei Cui, Rongxin Su und Renliang Huang. „The Preparation of a Polyamidoxime–Phosphorylated Cellulose Nanofibrils Composite Aerogel for the Selective Extraction of Uranium from Seawater“. Nanomaterials 14, Nr. 15 (01.08.2024): 1297. http://dx.doi.org/10.3390/nano14151297.
Der volle Inhalt der QuelleLiu, Peng, Minyan An, Teng He, Ping Li und Fuqiu Ma. „Recent Advances in Antibiofouling Materials for Seawater-Uranium Extraction: A Review“. Materials 16, Nr. 19 (28.09.2023): 6451. http://dx.doi.org/10.3390/ma16196451.
Der volle Inhalt der QuelleWang, Wei Guang, Kai Xuan Tan, Er Ju Xie, Jiang Liu und Gui Long Cai. „Supercritical CO2 Fluid Leaching of Uranium from Sandstone Type Ores“. Advanced Materials Research 634-638 (Januar 2013): 3517–21. http://dx.doi.org/10.4028/www.scientific.net/amr.634-638.3517.
Der volle Inhalt der QuelleBishimbayeva, G. K., A. M. Nalibayeva, S. A. Saidullayeva, A. K. Zhangabayeva, A. Bold, D. S. Zhumabayeva, Y. N. Abdikalykov und E. N. Panova. „EXTRACTION PROPERTIES OF SYNTHESIZED FLUORINATED ORGANOPHOSPHORUS COMPOUNDS“. RASAYAN Journal of Chemistry 16, Nr. 01 (2023): 440–46. http://dx.doi.org/10.31788/rjc.2023.1618246.
Der volle Inhalt der QuelleKafka, Tomáš. „Uranium industry and Ralsko“. Geografie 103, Nr. 3 (1998): 382–89. http://dx.doi.org/10.37040/geografie1998103030382.
Der volle Inhalt der QuelleKafka, Tomáš. „Uranium industry and Ralsko“. Geografie 103, Nr. 3 (1998): 253–60. http://dx.doi.org/10.37040/geografie1998103030253.
Der volle Inhalt der QuelleAfonin, Mikhail A., Vadim V. Romanovski und Vadim A. Scherbakov. „OSCILLATORY EXTRACTION OF URANIUM“. Solvent Extraction and Ion Exchange 16, Nr. 5 (August 1998): 1215–31. http://dx.doi.org/10.1080/07360299808934577.
Der volle Inhalt der QuelleKhan, Naeemullah, Mustafa Tuzen und Tasneem Gul Kazi. „Simple and Rapid Dual-Dispersive Liquid–Liquid Microextraction as an Innovative Extraction Method for Uranium in Real Water Samples Prior to the Determination of Uranium by a Spectrophotometric Technique“. Journal of AOAC INTERNATIONAL 100, Nr. 6 (01.11.2017): 1848–53. http://dx.doi.org/10.5740/jaoacint.17-0054.
Der volle Inhalt der QuelleMaher, Chris J., Christine Bouyer, Tamara L. Griffiths, Solène Legand, Gilles Leturcq, Manuel Miguirditchian und Mark Sarsfield. „Impact of uranium carbide organics treated by prolonged boiling and electrochemical oxidation upon uranium and plutonium solvent extraction“. Radiochimica Acta 106, Nr. 2 (26.01.2018): 95–106. http://dx.doi.org/10.1515/ract-2017-2799.
Der volle Inhalt der QuelleDissertationen zum Thema "Extraction uranium"
Carter, Helen. „Uranium separations using extraction chromatography“. Thesis, Loughborough University, 2000. https://dspace.lboro.ac.uk/2134/11261.
Der volle Inhalt der QuelleLawson, P. N. E. „The kinetics of uranium-nitric acid extraction“. Thesis, University of Bradford, 1986. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.374930.
Der volle Inhalt der QuelleRinsant, Damien. „Elaboration de matériaux hybrides fonctionnalisés de type MOFs pour l’extraction sélective de l’uranium“. Thesis, Montpellier, 2019. http://www.theses.fr/2019MONTS062.
Der volle Inhalt der QuelleThe increase of world energy production involves the research and development of new more efficient and ecofriendly processes for uranium ores valorization. Therefore, the development of new materials for an efficient solid-liquid extraction of U is necessary. In this thesis, the synthesis of materials named Metal Organic Framework (MOF) and their use to the uranium extraction from ores are studied. MOFs are hybrid and crystalline materials showing high performances for uranium extractions in weak acid solutions.In order to answer to this objective, the stability of two type of MOFs has been studied at different contact time in acidic solution simulating the ore leachate. Afterwards, zirconium based MOFs functionalized with two different organic functions have been synthesized and characterized with PXRD, BET, TGA, SEM, FT-IR and NMR. The uranium extraction behavior with three functionalized MOFs has been studied in function of the contact time, uranium concentration, sulfate concentration and pH. The uranium extraction values coupled with spectroscopic analysis of uranium loaded materials afford the understanding of uranium extraction mechanisms for both materials.Keywords: MOFs, organic synthesis, solid-liquid separation, uranium
Pschirer, David M. „Electrochemical uranium valence control in centrifugal solvent extraction contractors“. Thesis, Georgia Institute of Technology, 1987. http://hdl.handle.net/1853/12995.
Der volle Inhalt der QuelleMoreno, Martinez Diego. „Etude par dynamique moléculaire de la séparation de l'uranium (VI) sur support solide“. Electronic Thesis or Diss., Montpellier, Ecole nationale supérieure de chimie, 2022. http://www.theses.fr/2022ENCM0018.
Der volle Inhalt der QuelleThe uranium extraction plays an essential role in the nuclear fuel cycle. The extraction using mesoporous silica solid supports represents a promising alternative to the liquid-liquid extraction processes. In fact, the compactness of these solid supports, the facility of implementation associated to the reduction of organic effluents give to this system great competitive advantage. This kind of systems has already been studied experimentally within the framework of two PhD students in the CEA (Atomic Energy Commission). Thus, the objective of this research, centered on theoretical chemistry studies (especially by molecular dynamics), is to rationalize the behaviors that have been experimentally observed and to provide comprehension elements about the involved mechanisms. In order to do this, the uranium (VI) coordination at the interface within the solid phase and the aqueous phase, the influence of diverse structural parameters of the solid support, and the chemical conditions of the uranium speciation will be studied
Pitt, Julian Llewellyn. „The behaviour of mineral particles in uranium solvent extraction systems“. Thesis, Imperial College London, 1993. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.339619.
Der volle Inhalt der QuelleSiebert, Stéphane. „Hydrodynamique et transfert isotopique dans une colonne pulsée à plateaux perforés“. Châtenay-Malabry, Ecole centrale de Paris, 1985. http://www.theses.fr/1985ECAP0026.
Der volle Inhalt der QuelleArtese, Alexandre. „Caractérisation de ligands N,P pour le raffinage de l'uranium(VI) en milieu nitrique“. Thesis, Montpellier, 2019. http://www.theses.fr/2019MONTS067.
Der volle Inhalt der QuelleRefining plants of natural uranium concentrates use hydrometallurgical processes to produce uranium with a so-called "nuclear" purity. After dissolution in nitric acid to obtain an aqueous solution of uranium(VI), solvent extraction process is used to purify uranium. The commonly used extractant tri-n-butyl phosphate (or TBP) present however some drawbacks (accumulation of thorium, non-concentrating back-extraction, significant solubility in an aqueous phase).The goal of the study is to explore the ability of new N, P bifunctional extractants for the selective extraction of uranium(VI) in nitric media, and to understand the mechanisms involved in the extraction of uranium(VI) as well as in the extraction of the competing element zirconium(IV).Mechanisms underlying solvent extraction processes being not only based on the chelating properties of the extractant molecules, but also on their capacity to form supramolecular aggregates because of their amphiphilic nature, the extraction mechanisms were studied at both molecular and supramolecular scales.Thanks to the understanding of the extraction mechanisms, the difference of separation factor U/Zr obtained with two amidophosphonates extractants which differ only in the presence of a central alkyl chain could be explained. It was shown that this difference takes its origin in the ability of one of the extractants N, P to self-assemble and not in different affinities of the coordinating functions
Berger, Clémence. „Optimisation de molécules extractantes pour le multi-recyclage du Plutonium dans les combustibles de nouvelle génération“. Thesis, Montpellier, 2019. http://www.theses.fr/2019MONTS041.
Der volle Inhalt der QuelleThis thesis, conducted in the framework of the reprocessing of spent nuclear fuels by solvent extraction, concerns the extraction performances evaluation in view of new extractants optimization: carbamide molecules (R1R2NC(O)NR3R4). This extractant family has not attracted much attention in literature but appears as a good substitutes for the chemical separation of uranium and plutonium from an nitric acid aqueous phase. The considering process will allow to extract uranium and plutonium at high nitric acid concentration (CHNO3aq = 4 mol.L-1) and separate these two elements at lower nitric acid concentration (CHNO3aq = 0,5 mol.L-1) without redox chemistry.In these conditions, 17 carbamide extractants were studied to observe the influence of alkyl chains length, substituent number, position and number of (2-ethylhexyl) ramifications on the uranium and plutonium extraction and on the U/Pu selectivity. Results indicate a high uranium extraction by carbamide molecules. Moreover, substituent number have a high influence on the cations extraction whose distribution ratio highly increase with the –NH group presence on the carbamide function. On the other hand, ramifications addition decrease the extraction and the U/Pu separation with the decreasing of distribution ratios. Additional studies on loading capacity and viscosity measurements allow to optimize the structure and some good analogs are proposed to process development.The uranium and plutonium speciation in organic phase as a function of experimental conditions (carbamide structure, nitric acid concentration, etc) allow to highlight formed complexes: UO2(NO3)2L2; UO2(NO3)3(HL) and {UO2(NO3)L2}(NO3) for uranium and Pu(NO3)4L2 and Pu(NO3)6(HL)2 for plutonium. The relation between extracting properties and formed complexes in organic phase has been made. In particular, modification of the uranium extraction mechanism is observed for the compounds containing –NH group. Moreover, the increase of aqueous nitric acid concentration have a favorable effect on the formation of outer sphere complexes UO2(NO3)3(HL) and Pu(NO3)6(HL)2.Then extractant stability of extractant regarding γ radiolysis have also been studied
Van, der Ryst Reinier Hendrik. „Evaluation of the solvent extraction organic phase in a uranium extraction plant / Reinier Hendrik van der Ryst“. Thesis, North-West University, 2010. http://hdl.handle.net/10394/4921.
Der volle Inhalt der QuelleThesis (M.Ing. (Chemical Engineering))--North-West University, Potchefstroom Campus, 2011.
Bücher zum Thema "Extraction uranium"
Tessier, Marc, und David Widgington. Extraction!: Comix reportage. Montréal: Cumulus Press, 2007.
Den vollen Inhalt der Quelle findenCentre, Bhabha Atomic Research, Hrsg. Studies on supercritical fluid extraction of uranium and thorium from liquid and solid matrix. Mumbai: Bhabha Atomic Research Centre, 2005.
Den vollen Inhalt der Quelle findenCommission canadienne de sûreté nucléaire. La mesure des produits de filiation du radon en suspension dans l'air dans les mines d'uranium et les usines de concentration d'uranium. Ottawa, Ont: Commission canadienne de sûreté nucléaire, 2003.
Den vollen Inhalt der Quelle findenCommission conjointe fédérale-provinciale d'examen des projets d'exploitation de mines d'uranium dans le nord de la Saskatchewan (Canada). Projets d'exploitation de mines d'uranium dans le nord de la Saskatchewan: Dominique-Janine Extension, McClean Lake Project et Midwest Joint Venture. Hull, Qué: Bureau fédéral d'examen des évaluations environnementales, 1993.
Den vollen Inhalt der Quelle findenBrunet, Philippe. La nature dans tous ses états: Uranium, nucléaire et radioactivité en limousin : une aproche sociologique de la question environnementale de l'industrie de l'uranium. Limoges: Pulim, 2004.
Den vollen Inhalt der Quelle findenCanada. Bureau fédéral d'examen des évaluations environnementales. Mines d'uranium de Rabbit Lake A-zone, D-zone et Eagle Point: Rapport de la Commission d'examen des évaluations environnementales. Hull, Qué: Bureau fédéral d'examen des évaluations environnementales, 1993.
Den vollen Inhalt der Quelle findenU.S. Nuclear Regulatory Commission. Division of Fuel Cycle Safety and Safeguards. und Center for Nuclear Waste Regulatory Analyses (Southwest Research Institute), Hrsg. A baseline risk-informed, performance-based approach for in situ leach uranium extraction leases. Washington, DC: Division of Fuel Cycle Safety and Safeguards, Office of Nuclear Material Safety and Safeguards, U.S. Nuclear Regulatory Commission, 2001.
Den vollen Inhalt der Quelle findenU.S. Nuclear Regulatory Commission. Division of Fuel Cycle Safety and Safeguards. und Center for Nuclear Waste Regulatory Analyses (Southwest Research Institute), Hrsg. A baseline risk-informed, performance-based approach for in situ leach uranium extraction leases. Washington, DC: Division of Fuel Cycle Safety and Safeguards, Office of Nuclear Material Safety and Safeguards, U.S. Nuclear Regulatory Commission, 2001.
Den vollen Inhalt der Quelle findenUnited States. Bureau of Land Management. Arizona Strip District. The Hermit Project appendix document: A major modification to the Hunt Project plan of operations for uranium ore extraction. St. George, Utah: The District, 1987.
Den vollen Inhalt der Quelle findenUnited States. Bureau of Land Management. Arizona Strip District. The Hermit Project draft environmental assessment: A major modification to the Hunt Project plan of operations for uranium ore extraction. St. George, Utah: The District, 1987.
Den vollen Inhalt der Quelle findenBuchteile zum Thema "Extraction uranium"
Dutta, Sujay Kumar, und Dharmesh R. Lodhari. „Uranium“. In Extraction of Nuclear and Non-ferrous Metals, 27–37. Singapore: Springer Singapore, 2017. http://dx.doi.org/10.1007/978-981-10-5172-2_2.
Der volle Inhalt der QuelleZhou, Zhiquan, Yan Ren, Kaikai Ye, Yuqing Niu, Jiayu Zhang, Shu Meng, Shaohui Kang, Xiaohao Cao und Dabing Li. „Research on Re-extraction Technology for Uranium Refining Based on Fractionation Extraction“. In Springer Proceedings in Physics, 355–66. Singapore: Springer Nature Singapore, 2023. http://dx.doi.org/10.1007/978-981-99-1023-6_32.
Der volle Inhalt der QuelleBurtynsky, Edward. „Landscapes of Extraction“. In Heavy Metal, 67–86. Cambridge, UK: Open Book Publishers, 2024. http://dx.doi.org/10.11647/obp.0373.08.
Der volle Inhalt der QuelleYunusov, M. M. „Legacy of Uranium Extraction and Environmental Security in the Republic of Tajikistan“. In The New Uranium Mining Boom, 401–7. Berlin, Heidelberg: Springer Berlin Heidelberg, 2011. http://dx.doi.org/10.1007/978-3-642-22122-4_47.
Der volle Inhalt der QuelleWang, Yajie, Lufeng Wang, Chuanjiang Dong, Li Li, Mengqi Tang, Weizhong Sun und Yao Wu. „Evaluation of Uncertainty for Determination of Trace Uranium in Biology by Laser Fluorescence Method“. In Springer Proceedings in Physics, 549–66. Singapore: Springer Nature Singapore, 2023. http://dx.doi.org/10.1007/978-981-99-1023-6_48.
Der volle Inhalt der QuelleFakhi, Said, Rabie Outayad, Elmehdi Fait, Zineb Faiz, C. Galindo, Abderrahim Bouih, Moncef Benmansour et al. „Sequential Extraction of U and Th Isotopes: Study of Their Intrinsic Distribution in Phosphate and Limestone Sedimentary Rock in Comparison with Black Shale“. In Uranium - Past and Future Challenges, 581–90. Cham: Springer International Publishing, 2014. http://dx.doi.org/10.1007/978-3-319-11059-2_66.
Der volle Inhalt der QuelleWai, Chien M., Yuehe Lin, Min Ji, Karen L. Toews und Neil G. Smart. „Extraction and Separation of Uranium and Lanthanides with Supercritical Fluids“. In ACS Symposium Series, 390–400. Washington, DC: American Chemical Society, 1999. http://dx.doi.org/10.1021/bk-1999-0716.ch023.
Der volle Inhalt der QuelleConde, Marta, und Martí Orta-Martínez. „Activism Mobilizing Science Revisited“. In Studies in Ecological Economics, 261–70. Cham: Springer International Publishing, 2023. http://dx.doi.org/10.1007/978-3-031-22566-6_22.
Der volle Inhalt der QuelleÖlmez, Ş., und M. Eral. „Extraction of Uranium from Acidic Solutions by TBP Impregnated Polyurethane Foam“. In Nuclear Analytical Methods in the Life Sciences 1994, 731–35. Totowa, NJ: Humana Press, 1994. http://dx.doi.org/10.1007/978-1-4757-6025-5_85.
Der volle Inhalt der QuelleLin, Wang, Xu Dan, Feng Jianxin, Cui Hanlong, Wang Wenhui und Zhu Yingxi. „Solid-Liquid Equilibria of Ternary Systems UO2(NO3)2 + HNO3 + H2O and UF4 + HF + H2O at 298 K“. In Springer Proceedings in Physics, 480–89. Singapore: Springer Nature Singapore, 2023. http://dx.doi.org/10.1007/978-981-99-1023-6_42.
Der volle Inhalt der QuelleKonferenzberichte zum Thema "Extraction uranium"
Vo, Duc-Tri, Ionela Prodan, Laurent Lefèvre, Vincent Vanel, Sylvain Costenoble und Binh Dinh. „ANN-Based Adaptive NMPC for Uranium Extraction-Scrubbing Operation in Spent Nuclear Fuel Treatment Process*“. In 2024 IEEE Conference on Control Technology and Applications (CCTA), 702–9. IEEE, 2024. http://dx.doi.org/10.1109/ccta60707.2024.10666566.
Der volle Inhalt der QuelleMartoyan, Gagik, Garik Nalbandyan, Lavrenti Gagiyan, Gagik Karamyan, Artak Barseghyan und Gagik Brutyan. „Application of a New Technology for Reprocessing of Wastes Within the Framework of Rehabilitation of Uranium Mines Operated by In Situ Leaching“. In ASME 2011 14th International Conference on Environmental Remediation and Radioactive Waste Management. ASMEDC, 2011. http://dx.doi.org/10.1115/icem2011-59403.
Der volle Inhalt der QuelleStojanovic, M., D. Potpara, D. Iles und L. Tesmanovic. „Fractional uranium extraction from tailings and various soil types“. In The 8th International Mineral Processing Symposium. Taylor & Francis Group, 6000 Broken Sound Parkway NW, Suite 300, Boca Raton, FL 33487-2742: CRC Press, 2017. http://dx.doi.org/10.4324/9780203747117-129.
Der volle Inhalt der QuelleWray, Christopher M., und Achim D. Herrmann. „INVESTIGATING URANIUM UPTAKE INTO MODERN CARBONATES BY SEQUENTIAL EXTRACTION“. In 50th Annual GSA South-Central Section Meeting. Geological Society of America, 2016. http://dx.doi.org/10.1130/abs/2016sc-273853.
Der volle Inhalt der QuelleBektay, Yerkin, Akmurat Altynbek, Erzhan Mukanov, Gaukhar Turysbekova und Bauyrzhan Shiderin. „RECOVERY OF ASSOCIATED METALS DURING IN SITU LEACHING OF URANIUM“. In 22nd SGEM International Multidisciplinary Scientific GeoConference 2022. STEF92 Technology, 2022. http://dx.doi.org/10.5593/sgem2022/1.1/s03.041.
Der volle Inhalt der QuelleGreene, John A., Roseanna M. Neupauer, Ming Ye, Joseph R. Kasprzyk, David C. Mays und Gary P. Curtis. „Engineered Injection and Extraction for Remediation of Uranium-Contaminated Groundwater“. In World Environmental and Water Resources Congress 2017. Reston, VA: American Society of Civil Engineers, 2017. http://dx.doi.org/10.1061/9780784480618.011.
Der volle Inhalt der QuelleZhao, Ningbo, Jin Fu, Xinchun Li, Chuan Zhang und Donghui Zhang. „Study on the Extraction Technology of Weak Uranium Geochemical Anomalies“. In International conference on Future Energy, Environment and Materials. Southampton, UK: WIT Press, 2014. http://dx.doi.org/10.2495/feem130461.
Der volle Inhalt der QuelleGerasimov, Aleksander S., Boris R. Bergelson und Tamara S. Zaritskaya. „Two Periods of Long-Term Storage of Thorium Spent Fuel“. In ASME 2001 8th International Conference on Radioactive Waste Management and Environmental Remediation. American Society of Mechanical Engineers, 2001. http://dx.doi.org/10.1115/icem2001-1219.
Der volle Inhalt der QuelleSchneider, Erich A., und Neil Shah. „Near Term Deployment, Long Term Impact: Uranium Price Over the Lifetime of New Capacity“. In 16th International Conference on Nuclear Engineering. ASMEDC, 2008. http://dx.doi.org/10.1115/icone16-48573.
Der volle Inhalt der QuelleVorontsov, P. Y. „AN EFFECT OF THE MATERIAL COMPOSITION OF ORES AND HOST ROCKS TO THE URANIUM MINING AND LEACHING PROCESS BY THE METHOD OF IN-SITU LEACHING (ISL) AT RESERVOIR-INFILTRATION-TYPE DEPOSITS“. In Проблемы минералогии, петрографии и металлогении. Научные чтения памяти П. Н. Чирвинского. ПЕРМСКИЙ ГОСУДАРСТВЕННЫЙ НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ УНИВЕРСИТЕТ, 2022. http://dx.doi.org/10.17072/chirvinsky.2022.34.
Der volle Inhalt der QuelleBerichte der Organisationen zum Thema "Extraction uranium"
Skone, Timothy J. Uranium, Extraction and Transport. Office of Scientific and Technical Information (OSTI), Mai 2012. http://dx.doi.org/10.2172/1509229.
Der volle Inhalt der QuelleAl-Sheikhly, Mohamad, Travis Dietz, Zois Tsinas, Claire Tomaszewski, Ileana M. Pazos, Olga Nigliazzo, Weixing Li, Mohamad Adel-Hadadi und Aaron Barkatt. Enhancement of Extraction of Uranium from Seawater. Office of Scientific and Technical Information (OSTI), April 2016. http://dx.doi.org/10.2172/1329194.
Der volle Inhalt der QuelleSkone, Timothy J. Uranium, Extraction and Transport with European Enrichment. Office of Scientific and Technical Information (OSTI), Mai 2012. http://dx.doi.org/10.2172/1509230.
Der volle Inhalt der QuelleSkone, Timothy J. Uranium, Extraction and Transport with US Enrichment. Office of Scientific and Technical Information (OSTI), Mai 2012. http://dx.doi.org/10.2172/1509231.
Der volle Inhalt der QuelleDODD, E. N. Plutonium Uranium Extraction Facility Documented Safety Analysis. Office of Scientific and Technical Information (OSTI), Oktober 2003. http://dx.doi.org/10.2172/817849.
Der volle Inhalt der QuelleVisser, A., und R. Robert Pierce. SOLVENT EXTRACTION FOR URANIUM MOLYBDENUM ALLOY DISSOLUTION FLOWSHEET. Office of Scientific and Technical Information (OSTI), Juni 2007. http://dx.doi.org/10.2172/908930.
Der volle Inhalt der QuelleDietz, Travis, Eli Fastow, Micah Tsoi, Zois Tsinas, Ileana Pazos und Mohamad Al-Sheikhly. Enhancement of the Extraction of Uranium from Seawater. Office of Scientific and Technical Information (OSTI), Dezember 2018. http://dx.doi.org/10.2172/1489218.
Der volle Inhalt der QuelleBhatia, R. K. ,. Westinghouse Hanford. Plutonium-Uranium Extraction (PUREX) facility preclosure work plan. Office of Scientific and Technical Information (OSTI), Juli 1996. http://dx.doi.org/10.2172/657351.
Der volle Inhalt der QuelleGorecki, H., und K. Grabas. Extraction of uranium(IV) from wet-process phosphoric acid in a small centrifugal extractor. Office of Scientific and Technical Information (OSTI), Januar 1991. http://dx.doi.org/10.2172/7800013.
Der volle Inhalt der QuelleLin, Wenbin, und Kathryn Taylor-Pashow. Development of Novel Sorbents for Uranium Extraction from Seawater. Office of Scientific and Technical Information (OSTI), Januar 2014. http://dx.doi.org/10.2172/1120745.
Der volle Inhalt der Quelle