Inhaltsverzeichnis
Auswahl der wissenschaftlichen Literatur zum Thema „Extrachromosomal circular DNA“
Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an
Machen Sie sich mit den Listen der aktuellen Artikel, Bücher, Dissertationen, Berichten und anderer wissenschaftlichen Quellen zum Thema "Extrachromosomal circular DNA" bekannt.
Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.
Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.
Zeitschriftenartikel zum Thema "Extrachromosomal circular DNA"
Gonzalez, Rocio Chamorro, Thomas Conrad, Robin Xu, Madalina Giurgiu, Maja Cwikla, Katharina Kasack, Lotte Brückner et al. „Abstract 1693: Dissecting intercellular extrachromosomal circular DNA heterogeneity in single cancer cells with scEC&T-seq“. Cancer Research 82, Nr. 12_Supplement (15.06.2022): 1693. http://dx.doi.org/10.1158/1538-7445.am2022-1693.
Der volle Inhalt der QuelleWang, Keyi, Hui Tian, Lequn Wang, Lin Wang, Yacong Tan, Ziting Zhang, Kai Sun et al. „Deciphering extrachromosomal circular DNA in Arabidopsis“. Computational and Structural Biotechnology Journal 19 (2021): 1176–83. http://dx.doi.org/10.1016/j.csbj.2021.01.043.
Der volle Inhalt der QuelleShimizu, Noriaki. „Gene Amplification and the Extrachromosomal Circular DNA“. Genes 12, Nr. 10 (28.09.2021): 1533. http://dx.doi.org/10.3390/genes12101533.
Der volle Inhalt der QuelleCohen, Sarit, Sophie Menut und Marcel Méchali. „Regulated Formation of Extrachromosomal Circular DNA Molecules during Development in Xenopus laevis“. Molecular and Cellular Biology 19, Nr. 10 (01.10.1999): 6682–89. http://dx.doi.org/10.1128/mcb.19.10.6682.
Der volle Inhalt der QuelleMøller, Henrik D., Lance Parsons, Tue S. Jørgensen, David Botstein und Birgitte Regenberg. „Extrachromosomal circular DNA is common in yeast“. Proceedings of the National Academy of Sciences 112, Nr. 24 (02.06.2015): E3114—E3122. http://dx.doi.org/10.1073/pnas.1508825112.
Der volle Inhalt der QuelleSun, Teng, Kun Wang, Cuiyun Liu, Yin Wang, Jianxun Wang und Peifeng Li. „Identification of Extrachromosomal Linear microDNAs Interacted with microRNAs in the Cell Nuclei“. Cells 8, Nr. 2 (01.02.2019): 111. http://dx.doi.org/10.3390/cells8020111.
Der volle Inhalt der QuelleYerlici, V. Talya, Michael W. Lu, Carla R. Hoge, Richard V. Miller, Rafik Neme, Jaspreet S. Khurana, John R. Bracht und Laura F. Landweber. „Programmed genome rearrangements in Oxytricha produce transcriptionally active extrachromosomal circular DNA“. Nucleic Acids Research 47, Nr. 18 (28.08.2019): 9741–60. http://dx.doi.org/10.1093/nar/gkz725.
Der volle Inhalt der QuelleClark, C. G., und G. A. Cross. „rRNA genes of Naegleria gruberi are carried exclusively on a 14-kilobase-pair plasmid“. Molecular and Cellular Biology 7, Nr. 9 (September 1987): 3027–31. http://dx.doi.org/10.1128/mcb.7.9.3027-3031.1987.
Der volle Inhalt der QuelleClark, C. G., und G. A. Cross. „rRNA genes of Naegleria gruberi are carried exclusively on a 14-kilobase-pair plasmid.“ Molecular and Cellular Biology 7, Nr. 9 (September 1987): 3027–31. http://dx.doi.org/10.1128/mcb.7.9.3027.
Der volle Inhalt der QuelleAin, Quratul, Christian Schmeer, Diane Wengerodt, Otto W. Witte und Alexandra Kretz. „Extrachromosomal Circular DNA: Current Knowledge and Implications for CNS Aging and Neurodegeneration“. International Journal of Molecular Sciences 21, Nr. 7 (02.04.2020): 2477. http://dx.doi.org/10.3390/ijms21072477.
Der volle Inhalt der QuelleDissertationen zum Thema "Extrachromosomal circular DNA"
Rodriguez, Fos Elias. „Study of complex chromosomal rearrangements in cancer. The role of extrachromosomal circular DNA as a genome remodeler in neuroblastoma“. Doctoral thesis, Universitat de Barcelona, 2020. http://hdl.handle.net/10803/672713.
Der volle Inhalt der QuelleZhang, Panpan. „Étude du paysage des éléments transposables sous forme d'ADN circulaire extrachromosomique et dans l'assemblage des génomes de plantes à l'aide du séquençage en lectures longues“. Thesis, Université de Montpellier (2022-….), 2022. http://www.theses.fr/2022UMONG016.
Der volle Inhalt der QuelleTransposable elements (TEs) are repetitive DNA sequences with the intrinsic ability to move and amplify in genomes. Active transposition of TEs is linked to the formation of extrachromosomal circular DNA (eccDNA). However, the complete landscape of this eccDNA compartment and its interactions with the genome were not well defined. In addition, at the beginning of my thesis, there were no bioinformatics tools available to identify eccDNAs from long-read sequencing data.To address these questions during my PhD, we first developed a tool, called ecc_finder, to automate eccDNA detection from long-read sequencing and optimized detection from short-read sequences to characterize TE mobility. By applying ecc_finder to Arabidopsis, human and wheat eccDNA-seq data (with genome sizes ranging from 120 Mb to 17 Gb), we documented the broad applicability of ecc_finder as well as optimization of computational time, sensitivity and accuracy.In the second project, we developed a meta-assembly tool called SASAR to reconcile the results of different genome assemblies from long-read sequencing data. For different plant species, SASAR obtained high quality genome assemblies in an efficient time and resolved structural variations caused by TEs.In the last project, we used SASAR-assembled genome and ecc_finder-detected eccDNA to characterize eccDNA-genome interactions. In Arabidopsis hypomethylated epigenetic mutants, we highlighted the role of the epigenome in protecting genome stability not only from TE mobility but also from genomic rearrangements and gene chimerism. Overall, our findings on eccDNA, genome assembly and their interactions, as well as the development of tools, offer new insights into the role of TEs in the adaptive evolution of plants to rapid environmental change
Pont, Geneviève. „Adn circulaires extrachromosomiques dans les embryons de drosophila melanogaster : caracterisation d'une classe moleculaire homologue aux genes histones“. Clermont-Ferrand 2, 1987. http://www.theses.fr/1987CLF21068.
Der volle Inhalt der QuelleBurkert, Christian Martin. „Cis-regulation and genetic control of gene expression in neuroblastoma“. Doctoral thesis, Humboldt-Universität zu Berlin, 2021. http://dx.doi.org/10.18452/23008.
Der volle Inhalt der QuelleGene regulation controls phenotypes in health and disease. In cancer, the interplay between germline variation, genetic aberrations and epigenetic factors modulate gene expression in cis. The childhood cancer neuroblastoma originates from progenitor cells of the sympathetic nervous system. It is characterized by a sparsity of recurrent exonic mutations but frequent somatic copy-number alterations, including gene amplifications on extrachromosomal circular DNA. So far, little is known on how local genetic and epigenetic factors regulate genes in neuroblastoma to establish disease phenotypes. I here combine allele-specific analysis of whole genomes, transcriptomes and circular DNA from neuroblastoma patients to characterize genetic and cis-regulatory effects, and prioritize germline regulatory variants by cis-QTLs mapping and chromatin profiles. The results show that somatic copy-number dosage dominates local genetic effects and regulates pathways involved in telomere maintenance, genomic stability and neuronal processes. Gene amplifications show strong dosage effects and are frequently located on large but not small extrachromosomal circular DNAs. My analysis implicates 11q loss in the upregulation of histone variants H3.3 and H2A in tumors with alternative lengthening of telomeres and cooperative effects of somatic rearrangements and somatic copy-number gains in the upregulation of TERT. Both 17p copy-number imbalances and associated downregulation of neuronal genes as well as upregulation of the imprinted gene RTL1 by copy-number-independent allelic dosage effects is associated with an unfavorable prognosis. cis-QTL analysis confirms the previously reported regulation of the LMO1 gene by a super-enhancer risk polymorphism and characterizes the regulatory potential of additional GWAS risk loci. My work highlights the importance of dosage effects in neuroblastoma and provides a detailed map of regulatory variation active in this disease.
LI, SHENG-YI, und 李盛義. „Extrachromosomal circular DNA in drug-Resistant Leishmania:emergence, changes and possible function“. Thesis, 1990. http://ndltd.ncl.edu.tw/handle/50424003175896766945.
Der volle Inhalt der QuelleBuchteile zum Thema "Extrachromosomal circular DNA"
Lumpkin, Charles K., John R. McGill, Karl T. Riabowol, E. J. Moerman, Robert J. Shmookler Reis und Samuel Goldstein. „Extrachromosomal Circular DNA and Aging Cells“. In Advances in Experimental Medicine and Biology, 479–93. Boston, MA: Springer US, 1985. http://dx.doi.org/10.1007/978-1-4684-7853-2_24.
Der volle Inhalt der QuelleGraupner, S., und W. Wackernagel. „Identification and Characterization of Extrachromosomal Circular DNA Released from a Genetically Modified Chromosome of Hansenula polymorpha“. In Transgenic Organisms and Biosafety, 171–80. Berlin, Heidelberg: Springer Berlin Heidelberg, 1996. http://dx.doi.org/10.1007/978-3-642-61460-6_18.
Der volle Inhalt der QuelleYousuf, Parvaiz. „Circular DNA: How Circular DNA Assists Cancer Roll with Therapeutic Punches“. In Gene Expression [Working Title]. IntechOpen, 2022. http://dx.doi.org/10.5772/intechopen.102687.
Der volle Inhalt der QuelleKonferenzberichte zum Thema "Extrachromosomal circular DNA"
Chapman, Owen S., Shanqing Wang, Jens Luebeck, Alexandra Garancher, Jon D. Larson, Joshua Lange, John Crawford et al. „Abstract 95: The landscape of extrachromosomal circular DNA in medulloblastoma subgroups“. In Proceedings: AACR Annual Meeting 2021; April 10-15, 2021 and May 17-21, 2021; Philadelphia, PA. American Association for Cancer Research, 2021. http://dx.doi.org/10.1158/1538-7445.am2021-95.
Der volle Inhalt der QuelleZhu, Jing, Meijun Du, Peng Zhang und Liang Wang. „Abstract 4244: Detection and characterization of extrachromosomal circular DNA in human plasma“. In Proceedings: AACR Annual Meeting 2017; April 1-5, 2017; Washington, DC. American Association for Cancer Research, 2017. http://dx.doi.org/10.1158/1538-7445.am2017-4244.
Der volle Inhalt der Quelle