Zeitschriftenartikel zum Thema „Extracellular matrix proteins“

Um die anderen Arten von Veröffentlichungen zu diesem Thema anzuzeigen, folgen Sie diesem Link: Extracellular matrix proteins.

Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an

Wählen Sie eine Art der Quelle aus:

Machen Sie sich mit Top-50 Zeitschriftenartikel für die Forschung zum Thema "Extracellular matrix proteins" bekannt.

Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.

Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.

Sehen Sie die Zeitschriftenartikel für verschiedene Spezialgebieten durch und erstellen Sie Ihre Bibliographie auf korrekte Weise.

1

Ruggiero, Florence, und Manuel Koch. „Making recombinant extracellular matrix proteins“. Methods 45, Nr. 1 (Mai 2008): 75–85. http://dx.doi.org/10.1016/j.ymeth.2008.01.003.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
2

GOLDFARB, RONALD H., und LANCE A. LIOTTA. „Thrombin Cleavage of Extracellular Matrix Proteins“. Annals of the New York Academy of Sciences 485, Nr. 1 Bioregulatory (Dezember 1986): 288–92. http://dx.doi.org/10.1111/j.1749-6632.1986.tb34590.x.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
3

Coito, Ana J., und Jerzy W. Kupiec-Weglinski. „EXTRACELLULAR MATRIX PROTEINS IN ORGAN TRANSPLANTATION1“. Transplantation 69, Nr. 12 (Juni 2000): 2465–73. http://dx.doi.org/10.1097/00007890-200006270-00001.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
4

Giomarelli, Barbara, Livia Visai, Karolin Hijazi, Simonetta Rindi, Michela Ponzio, Francesco Iannelli, Pietro Speziale und Gianni Pozzi. „Binding ofStreptococcus gordoniito extracellular matrix proteins“. FEMS Microbiology Letters 265, Nr. 2 (Dezember 2006): 172–77. http://dx.doi.org/10.1111/j.1574-6968.2006.00479.x.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
5

Moran, A. P., P. Kuusela und T. U. Kosunen. „Interaction ofHelicobacter pyloriwith extracellular matrix proteins“. Journal of Applied Bacteriology 75, Nr. 2 (August 1993): 184–89. http://dx.doi.org/10.1111/j.1365-2672.1993.tb02765.x.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
6

Hedley, S. J., D. J. Gawkrodger, A. P. Weetman und S. MacNeil. „Extracellular matrix proteins stimulate melanocyte tyrosinase“. Melanoma Research 5 (September 1995): 38. http://dx.doi.org/10.1097/00008390-199509001-00068.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
7

Campbell, N. E., L. Kellenberger, J. Greenaway, R. A. Moorehead, N. M. Linnerth-Petrik und J. Petrik. „Extracellular Matrix Proteins and Tumor Angiogenesis“. Journal of Oncology 2010 (2010): 1–13. http://dx.doi.org/10.1155/2010/586905.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
Annotation:
Tumor development is a complex process that relies on interaction and communication between a number of cellular compartments. Much of the mass of a solid tumor is comprised of the stroma which is richly invested with extracellular matrix. Within this matrix are a host of matricellular proteins that regulate the expression and function of a myriad of proteins that regulate tumorigenic processes. One of the processes that is vital to tumor growth and progression is angiogenesis, or the formation of new blood vessels from preexisting vasculature. Within the extracellular matrix are structural proteins, a host of proteases, and resident pro- and antiangiogenic factors that control tumor angiogenesis in a tightly regulated fashion. This paper discusses the role that the extracellular matrix and ECM proteins play in the regulation of tumor angiogenesis.
8

Patel, Trushar R., und Joerg Stetefeld. „Solution Conformation of Extracellular Matrix Proteins“. Biophysical Journal 102, Nr. 3 (Januar 2012): 381a. http://dx.doi.org/10.1016/j.bpj.2011.11.2086.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
9

Pakianathan, Deepika R. „Extracellular matrix proteins and leukocyte function“. Journal of Leukocyte Biology 57, Nr. 5 (Mai 1995): 699–702. http://dx.doi.org/10.1002/jlb.57.5.699a.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
10

Flinn, Barry S. „Plant extracellular matrix metalloproteinases“. Functional Plant Biology 35, Nr. 12 (2008): 1183. http://dx.doi.org/10.1071/fp08182.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
Annotation:
The plant extracellular matrix (ECM) includes a variety of proteins with critical roles in the regulation of plant growth, development, and responses to pests and pathogens. Several studies have shown that various ECM proteins undergo proteolytic modification. In mammals, the extracellular matrix metalloproteinases (MMPs) are known modifiers of the ECM, implicated in tissue architecture changes and the release of biologically active and/or signalling molecules. Although plant MMPs have been identified, little is known about their activity and function. Plant MMPs show structural similarity to mammalian MMPs, including the presence of an auto-regulatory cysteine switch domain and a zinc-binding catalytic domain. Plant MMPs are differentially expressed in cells and tissues during plant growth and development, as well as in response to several biotic and abiotic stresses. The few gene expression and mutant analyses to date indicate their involvement in plant growth, morphogenesis, senescence and adaptation and response to stress. In order to gain a further understanding of their function, an analysis and characterisation of MMP proteins, their activity and their substrates during plant growth and development are still required. This review describes plant MMP work to date, as well as the variety of genomic and proteomic methodologies available to characterise plant MMP activity, function and potential substrates.
11

Hynes, Richard O. „The evolution of metazoan extracellular matrix“. Journal of Cell Biology 196, Nr. 6 (19.03.2012): 671–79. http://dx.doi.org/10.1083/jcb.201109041.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
Annotation:
The modular domain structure of extracellular matrix (ECM) proteins and their genes has allowed extensive exon/domain shuffling during evolution to generate hundreds of ECM proteins. Many of these arose early during metazoan evolution and have been highly conserved ever since. Others have undergone duplication and divergence during evolution, and novel combinations of domains have evolved to generate new ECM proteins, particularly in the vertebrate lineage. The recent sequencing of several genomes has revealed many details of this conservation and evolution of ECM proteins to serve diverse functions in metazoa.
12

Gordon-Weeks, Alex, und Arseniy Yuzhalin. „Cancer Extracellular Matrix Proteins Regulate Tumour Immunity“. Cancers 12, Nr. 11 (11.11.2020): 3331. http://dx.doi.org/10.3390/cancers12113331.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
Annotation:
The extracellular matrix (ECM) plays an increasingly recognised role in the development and progression of cancer. Whilst significant progress has been made in targeting aspects of the tumour microenvironment such as tumour immunity and angiogenesis, there are no therapies that address the cancer ECM. Importantly, immune function relies heavily on the structure, physics and composition of the ECM, indicating that cancer ECM and immunity are mechanistically inseparable. In this review we highlight mechanisms by which the ECM shapes tumour immunity, identifying potential therapeutic targets within the ECM. These data indicate that to fully realise the potential of cancer immunotherapy, the cancer ECM requires simultaneous consideration.
13

Villa-Verde, Dea Maria S., und Wilson Savino. „Thymic "nurse" cells express extracellular matrix proteins“. Memórias do Instituto Oswaldo Cruz 86, suppl 3 (1991): 109–10. http://dx.doi.org/10.1590/s0074-02761991000700018.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
14

Bergmeier, W., und R. O. Hynes. „Extracellular Matrix Proteins in Hemostasis and Thrombosis“. Cold Spring Harbor Perspectives in Biology 4, Nr. 2 (21.09.2011): a005132. http://dx.doi.org/10.1101/cshperspect.a005132.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
15

Xiao, Jianguo, Magnus Höök, George M. Weinstock und Barbara E. Murray. „Conditional adherence ofEnterococcus faecalisto extracellular matrix proteins“. FEMS Immunology & Medical Microbiology 21, Nr. 4 (August 1998): 287–95. http://dx.doi.org/10.1111/j.1574-695x.1998.tb01176.x.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
16

KORNBLIHTT, ALBERTO R., und ALEJANDRO GUTMAN. „MOLECULAR BIOLOGY OF THE EXTRACELLULAR MATRIX PROTEINS“. Biological Reviews 63, Nr. 4 (November 1988): 465–507. http://dx.doi.org/10.1111/j.1469-185x.1988.tb00668.x.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
17

Klotz, Stephen A., und Robert L. Smith. „Glycosaminoglycans inhibitCandida albicansadherence to extracellular matrix proteins“. FEMS Microbiology Letters 99, Nr. 2-3 (Dezember 1992): 205–8. http://dx.doi.org/10.1111/j.1574-6968.1992.tb05567.x.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
18

LÖW, PETER, NOÉMI H. BORHEGYI, MIKLÓS SASS, LAJOS LÁSZLÓ und STUART E. REYNOLDS. „Ubiquitinated extracellular matrix proteins in insect cuticle“. Biochemical Society Transactions 25, Nr. 3 (01.08.1997): 379S. http://dx.doi.org/10.1042/bst025379s.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
19

Wagener, R. „Perifibrillar proteins in the cartilage extracellular matrix“. Osteoarthritis and Cartilage 20 (April 2012): S3. http://dx.doi.org/10.1016/j.joca.2012.02.614.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
20

Zare¸ba, Tomasz W., Corina Pascu, Waleria Hryniewicz und Torkel Wadström. „Binding of Extracellular Matrix Proteins by Enterococci“. Current Microbiology 34, Nr. 1 (01.01.1997): 6–11. http://dx.doi.org/10.1007/s002849900135.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
21

Hook, Magnus, Martin J. McGavin, Rampyari Raja, Giuseppe Raucci, Magnus Hook, Lech M. Switalski, Per-Eric Lindgren, Martin Lindberg und Christer Signas. „Interactions of bacteria with extracellular matrix proteins“. Cell Differentiation and Development 32, Nr. 3 (Dezember 1990): 433–38. http://dx.doi.org/10.1016/0922-3371(90)90060-a.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
22

Štyriak, I., B. Žatkovič und S. Maršalková. „Binding of extracellular matrix proteins by lactobacilli“. Folia Microbiologica 46, Nr. 1 (Februar 2001): 83–85. http://dx.doi.org/10.1007/bf02825894.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
23

Maillard, Elisa, Marie-Christine Sencier, A. Langlois, William Bietiger, MP Krafft, Michel Pinget und Séverine Sigrist. „Extracellular matrix proteins involved in pseudoislets formation“. Islets 1, Nr. 3 (November 2009): 232–41. http://dx.doi.org/10.4161/isl.1.3.9754.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
24

Schenke-Layland, Katja. „Special Issue “Extracellular Matrix Proteins and Mimics”“. Acta Biomaterialia 52 (April 2017): iv. http://dx.doi.org/10.1016/j.actbio.2017.03.029.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
25

Ma, Jun, Chao Ma, Jingjing Li, Yao Sun, Fangfu Ye, Kai Liu und Hongjie Zhang. „Extracellular Matrix Proteins Involved in Alzheimer's Disease“. Chemistry – A European Journal 26, Nr. 53 (23.07.2020): 12101–10. http://dx.doi.org/10.1002/chem.202000782.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
26

Aasebø, Elise, Annette K. Brenner, Even Birkeland, Tor Henrik Anderson Tvedt, Frode Selheim, Frode S. Berven und Øystein Bruserud. „The Constitutive Extracellular Protein Release by Acute Myeloid Leukemia Cells—A Proteomic Study of Patient Heterogeneity and Its Modulation by Mesenchymal Stromal Cells“. Cancers 13, Nr. 7 (25.03.2021): 1509. http://dx.doi.org/10.3390/cancers13071509.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
Annotation:
Extracellular protein release is important both for the formation of extracellular matrix and for communication between cells. We investigated the extracellular protein release by in vitro cultured normal mesenchymal stem cells (MSCs) and by primary human acute myeloid leukemia (AML) cells derived from 40 consecutive patients. We observed quantifiable levels of 3082 proteins in our study; for the MSCs, we detected 1446 proteins, whereas the number of released proteins for the AML cells showed wide variation between patients (average number 1699, range 557–2380). The proteins were derived from various cellular compartments (e.g., cell membrane, nucleus, and cytoplasms), several organelles (e.g., cytoskeleton, endoplasmatic reticulum, Golgi apparatus, and mitochondria) and had various functions (e.g., extracellular matrix and exosomal proteins, cytokines, soluble adhesion molecules, protein synthesis, post-transcriptional modulation, RNA binding, and ribonuclear proteins). Thus, AML patients were very heterogeneous both regarding the number of proteins and the nature of their extracellularly released proteins. The protein release profiles of MSCs and primary AML cells show a considerable overlap, but a minority of the proteins are released only or mainly by the MSC, including several extracellular matrix molecules. Taken together, our observations suggest that the protein profile of the extracellular bone marrow microenvironment differs between AML patients, these differences are mainly caused by the protein release by the leukemic cells but this leukemia-associated heterogeneity of the overall extracellular protein profile is modulated by the constitutive protein release by normal MSCs.
27

SMITH, ANTHONY J., ROSALIND S. TOBIAS, CLIVE G. PLANT, ROGER M. BROWNE, HERVE LESOT und JEAN-VICTOR RUCH. „Morphogenese proteins from dentine extracellular matrix and cell-Matrix interactions“. Biochemical Society Transactions 19, Nr. 2 (01.04.1991): 187S. http://dx.doi.org/10.1042/bst019187s.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
28

Ma, Zihan, Chenfeng Mao, Yiting Jia, Yi Fu und Wei Kong. „Extracellular matrix dynamics in vascular remodeling“. American Journal of Physiology-Cell Physiology 319, Nr. 3 (01.09.2020): C481—C499. http://dx.doi.org/10.1152/ajpcell.00147.2020.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
Annotation:
Vascular remodeling is the adaptive response to various physiological and pathophysiological alterations that are closely related to aging and vascular diseases. Understanding the mechanistic regulation of vascular remodeling may be favorable for discovering potential therapeutic targets and strategies. The extracellular matrix (ECM), including matrix proteins and their degradative metalloproteases, serves as the main component of the microenvironment and exhibits dynamic changes during vascular remodeling. This process involves mainly the altered composition of matrix proteins, metalloprotease-mediated degradation, posttranslational modification of ECM proteins, and altered topographical features of the ECM. To date, adequate studies have demonstrated that ECM dynamics also play a critical role in vascular remodeling in various diseases. Here, we review these related studies, summarize how ECM dynamics control vascular remodeling, and further indicate potential diagnostic biomarkers and therapeutic targets in the ECM for corresponding vascular diseases.
29

Boskey, Adele L. „The Role of Extracellular Matrix Components in Dentin Mineralization“. Critical Reviews in Oral Biology & Medicine 2, Nr. 3 (Juli 1991): 369–87. http://dx.doi.org/10.1177/10454411910020030501.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
Annotation:
The extracellular matrix of dentin consists of mineral (hydroxyapatite), collagen, and several noncollagenous matrix proteins. These noncollagenous matrix proteins may be mediators of cell-matrix interactions, matrix maturation, and mineralization. This review describes the current knowledge of the chemistry of mineral crystal formation in dentin with special emphasis on the roles of the dentin matrix proteins. The functions of some of these matrix proteins in the mineralization process have been deduced based on in vitro studies. Functions for others have been postulated based on analogy with some of the bone matrix proteins. Evidence suggests that several of these matrix proteins may have multiple effects on nucleation, crystal growth, and orientation of dentin hydroxyapatite.
30

Hynes, Richard O. „The Extracellular Matrix: Not Just Pretty Fibrils“. Science 326, Nr. 5957 (26.11.2009): 1216–19. http://dx.doi.org/10.1126/science.1176009.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
Annotation:
The extracellular matrix (ECM) and ECM proteins are important in phenomena as diverse as developmental patterning, stem cell niches, cancer, and genetic diseases. The ECM has many effects beyond providing structural support. ECM proteins typically include multiple, independently folded domains whose sequences and arrangement are highly conserved. Some of these domains bind adhesion receptors such as integrins that mediate cell-matrix adhesion and also transduce signals into cells. However, ECM proteins also bind soluble growth factors and regulate their distribution, activation, and presentation to cells. As organized, solid-phase ligands, ECM proteins can integrate complex, multivalent signals to cells in a spatially patterned and regulated fashion. These properties need to be incorporated into considerations of the functions of the ECM.
31

Hahn, U. „Extracellular Matrix Proteins in Small-Intestinal Cell Cultures“. Scandinavian Journal of Gastroenterology 23, sup151 (Januar 1988): 70–78. http://dx.doi.org/10.3109/00365528809095916.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
32

Xu, Xuehong, und Bruce E. Vogel. „A new job for ancient extracellular matrix proteins“. Communicative & Integrative Biology 4, Nr. 4 (Juli 2011): 433–35. http://dx.doi.org/10.4161/cib.15324.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
33

Kanasaki, Haruhiko. „Extracellular Matrix Proteins in the Anterior Pituitary Gland“. Open Neuroendocrinology Journal 4, Nr. 1 (06.05.2011): 111–19. http://dx.doi.org/10.2174/1876528901104010111.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
34

Ahmadi, Arash J., und Frederick A. Jakobiec. „Corneal Wound Healing: Cytokines and Extracellular Matrix Proteins“. International Ophthalmology Clinics 42, Nr. 3 (2002): 13–22. http://dx.doi.org/10.1097/00004397-200207000-00004.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
35

SMITH, ANTHONY J., HERVE LESOT, JOHN B. MATTHEWS, JEAN-VICTOR RUCH und VERA KARCHER-DJURICIC. „Relationship between keratins and dental extracellular matrix proteins“. Biochemical Society Transactions 15, Nr. 5 (01.10.1987): 855–56. http://dx.doi.org/10.1042/bst0150855.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
36

Rodier, Marie-Hélène, Brahim El Moudni, Catherine Kauffmann-Lacroix, Gyslaine Daniault und Jean-Louis Jacquemin. „ACandida albicansmetallopeptidase degrades constitutive proteins of extracellular matrix“. FEMS Microbiology Letters 177, Nr. 2 (August 1999): 205–10. http://dx.doi.org/10.1111/j.1574-6968.1999.tb13733.x.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
37

Westerlund, B., und T. K. Korhonen. „Bacterial proteins binding to the mammalian extracellular matrix“. Molecular Microbiology 9, Nr. 4 (August 1993): 687–94. http://dx.doi.org/10.1111/j.1365-2958.1993.tb01729.x.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
38

Gonzalez, Angel, Beatriz L. Gomez, Angela Restrepo, Andrew John Hamilton und Luz Elena Cano. „Recognition of extracellular matrix proteins byParacoccidioides brasiliensisyeast cells“. Medical Mycology 43, Nr. 7 (Januar 2005): 637–45. http://dx.doi.org/10.1080/13693780500064599.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
39

Bauer, Margaret E., und Stanley M. Spinola. „Binding of Haemophilus ducreyi to Extracellular Matrix Proteins“. Infection and Immunity 67, Nr. 5 (01.05.1999): 2649–52. http://dx.doi.org/10.1128/iai.67.5.2649-2652.1999.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
Annotation:
ABSTRACT We developed an enzyme-linked immunosorbent assay-based assay to assess Haemophilus ducreyi binding to extracellular matrix (ECM) proteins. H. ducreyi 35000HP bound to fibronectin, laminin, and type I and III collagen but not to type IV, V, or VI collagen or elastin. Isogenic strains with mutations inftpA or losB bound as well as the parent, suggesting that neither pili nor full-length lipooligosaccharide is required for H. ducreyi to bind to ECM proteins.
40

Manabe, R. i., K. Tsutsui, T. Yamada, M. Kimura, I. Nakano, C. Shimono, N. Sanzen et al. „Transcriptome-based systematic identification of extracellular matrix proteins“. Proceedings of the National Academy of Sciences 105, Nr. 35 (29.08.2008): 12849–54. http://dx.doi.org/10.1073/pnas.0803640105.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
41

Mendes-Giannini, Maria José Soares, Patrícia Ferrari Andreotti, Luciana Raquel Vincenzi, Juliana Leal Monteiro da Silva, Henrique Leonel Lenzi, Gil Benard, Roseli Zancopé-Oliveira, Herbert Leonel de Matos Guedes und Christiane Pienna Soares. „Binding of extracellular matrix proteins to Paracoccidioides brasiliensis“. Microbes and Infection 8, Nr. 6 (Mai 2006): 1550–59. http://dx.doi.org/10.1016/j.micinf.2006.01.012.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
42

Esgleas, Miriam, Sonia Lacouture und Marcelo Gottschalk. „Streptococcus suisserotype 2 binding to extracellular matrix proteins“. FEMS Microbiology Letters 244, Nr. 1 (März 2005): 33–40. http://dx.doi.org/10.1016/j.femsle.2005.01.017.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
43

Abeck, Dietrich, Alan P. Johnson und H. Mensing. „Binding of Haemophilus ducreyi to extracellular matrix proteins“. Microbial Pathogenesis 13, Nr. 1 (Juli 1992): 81–84. http://dx.doi.org/10.1016/0882-4010(92)90034-l.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
44

Tan, Kemin, und Jack Lawler. „The interaction of Thrombospondins with extracellular matrix proteins“. Journal of Cell Communication and Signaling 3, Nr. 3-4 (16.10.2009): 177–87. http://dx.doi.org/10.1007/s12079-009-0074-2.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
45

Hedrick, Lora. „Guidebook to the extracellular matrix and adhesion proteins“. Trends in Cell Biology 4, Nr. 2 (Februar 1994): 65. http://dx.doi.org/10.1016/0962-8924(94)90013-2.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
46

Chiquet-Ehrismann, R. „Tenascins, a growing family of extracellular matrix proteins“. Experientia 51, Nr. 9-10 (September 1995): 853–62. http://dx.doi.org/10.1007/bf01921736.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
47

Pollard, Thomas D. „Guidebook to the extracellular matrix and adhesion proteins“. Trends in Biochemical Sciences 19, Nr. 2 (Februar 1994): 96–97. http://dx.doi.org/10.1016/0968-0004(94)90044-2.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
48

Hohenester, Erhard, und Jürgen Engel. „Domain structure and organisation in extracellular matrix proteins“. Matrix Biology 21, Nr. 2 (März 2002): 115–28. http://dx.doi.org/10.1016/s0945-053x(01)00191-3.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
49

Curtis, Patrick D., James Atwood, Ron Orlando und Lawrence J. Shimkets. „Proteins Associated with the Myxococcus xanthus Extracellular Matrix“. Journal of Bacteriology 189, Nr. 21 (31.08.2007): 7634–42. http://dx.doi.org/10.1128/jb.01007-07.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
Annotation:
ABSTRACT Fruiting body formation of Myxococcus xanthus, like biofilm formation of many other organisms, involves the production of an extracellular matrix (ECM). While the polysaccharide component has been studied, the protein component has been largely unexplored. Proteins associated with the ECM were solubilized from purified ECM by boiling with sodium dodecyl sulfate and were identified by liquid chromatography-tandem mass spectrometry of tryptic fragments. The ECM is enriched in proteins of novel function; putative functions were assigned for only 5 of the 21 proteins. Thirteen putative ECM proteins had lipoprotein secretion signals. The genes for many ECM proteins were disrupted in the wild-type (WT), fibA, and pilA backgrounds. Disruption of the MXAN4860 gene had no effect in the WT or fibA background but in the pilA background resulted in a 24-h delay in aggregation and sporulation compared to its parent. The results of this study show that the M. xanthus ECM proteome is diverse and novel.
50

Timpl, Rupert, Takako Sasaki, Günter Kostka und Mon-Li Chu. „Fibulins: a versatile family of extracellular matrix proteins“. Nature Reviews Molecular Cell Biology 4, Nr. 6 (Juni 2003): 479–89. http://dx.doi.org/10.1038/nrm1130.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen

Zur Bibliographie