Inhaltsverzeichnis
Auswahl der wissenschaftlichen Literatur zum Thema „Extra-embryonic endoderm“
Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an
Machen Sie sich mit den Listen der aktuellen Artikel, Bücher, Dissertationen, Berichten und anderer wissenschaftlichen Quellen zum Thema "Extra-embryonic endoderm" bekannt.
Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.
Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.
Zeitschriftenartikel zum Thema "Extra-embryonic endoderm"
Selwood, L. „The Marsupial Blastocyst - a Study of the Blastocysts in the Hill Collection“. Australian Journal of Zoology 34, Nr. 2 (1986): 177. http://dx.doi.org/10.1071/zo9860177.
Der volle Inhalt der QuelleRossant, Janet. „Stem cells and lineage development in the mammalian blastocyst“. Reproduction, Fertility and Development 19, Nr. 1 (2007): 111. http://dx.doi.org/10.1071/rd06125.
Der volle Inhalt der QuelleBrown, Kemar, Stephanie Legros, Jérôme Artus, Michael Xavier Doss, Raya Khanin, Anna-Katerina Hadjantonakis und Ann Foley. „A Comparative Analysis of Extra-Embryonic Endoderm Cell Lines“. PLoS ONE 5, Nr. 8 (06.08.2010): e12016. http://dx.doi.org/10.1371/journal.pone.0012016.
Der volle Inhalt der QuelleMurray, P., und D. Edgar. „Regulation of the differentiation and behaviour of extra-embryonic endodermal cells by basement membranes“. Journal of Cell Science 114, Nr. 5 (01.03.2001): 931–39. http://dx.doi.org/10.1242/jcs.114.5.931.
Der volle Inhalt der QuelleMulvey, Claire M., Christian Schröter, Laurent Gatto, Duygu Dikicioglu, Isik Baris Fidaner, Andy Christoforou, Michael J. Deery et al. „Dynamic Proteomic Profiling of Extra-Embryonic Endoderm Differentiation in Mouse Embryonic Stem Cells“. STEM CELLS 33, Nr. 9 (23.06.2015): 2712–25. http://dx.doi.org/10.1002/stem.2067.
Der volle Inhalt der QuelleDowns, Karen M. „Is extra-embryonic endoderm a source of placental blood cells?“ Experimental Hematology 89 (September 2020): 37–42. http://dx.doi.org/10.1016/j.exphem.2020.07.008.
Der volle Inhalt der QuelleRugg-Gunn, Peter. „Derivation and Culture of Extra-Embryonic Endoderm Stem Cell Lines“. Cold Spring Harbor Protocols 2017, Nr. 1 (Januar 2017): pdb.prot093963. http://dx.doi.org/10.1101/pdb.prot093963.
Der volle Inhalt der QuelleNgondo, Richard Patryk, Daniel Cirera-Salinas, Jian Yu, Harry Wischnewski, Maxime Bodak, Sandrine Vandormael-Pournin, Anna Geiselmann et al. „Argonaute 2 Is Required for Extra-embryonic Endoderm Differentiation of Mouse Embryonic Stem Cells“. Stem Cell Reports 10, Nr. 2 (Februar 2018): 461–76. http://dx.doi.org/10.1016/j.stemcr.2017.12.023.
Der volle Inhalt der QuelleSelwood, L. „Development of early cell lineages in marsupial embryos: an overview“. Reproduction, Fertility and Development 6, Nr. 4 (1994): 507. http://dx.doi.org/10.1071/rd9940507.
Der volle Inhalt der QuelleGardner, R. L., S. C. Barton und M. A. H. Surani. „Use of triple tissue blastocyst reconstitution to study the development of diploid parthenogenetic primitive ectoderm in combination with fertilization-derived trophectoderm and primitive endoderm“. Genetics Research 56, Nr. 2-3 (Oktober 1990): 209–22. http://dx.doi.org/10.1017/s001667230003531x.
Der volle Inhalt der QuelleDissertationen zum Thema "Extra-embryonic endoderm"
Anderson, Kathryn Gayle Victoria. „Conserved mode of endoderm induction acts to promote context dependent embryonic and extra-embryonic lineage specification“. Thesis, University of Edinburgh, 2015. http://hdl.handle.net/1842/16473.
Der volle Inhalt der QuelleCho, Ting-yin. „Conversion from mouse embryonic to extra-embryonic endoderm stem cells reveals distinct differentiation capacities of pluripotent stem cell states“. Thesis, University of Cambridge, 2013. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.607991.
Der volle Inhalt der QuelleLoof, Gesa. „Elucidating the influence of chromatin topology on cellular identity in murine pre-implantation development“. Doctoral thesis, Humboldt-Universität zu Berlin, 2021. http://dx.doi.org/10.18452/22928.
Der volle Inhalt der QuelleTightly controlled gene regulation is key to functional metazoan embryonic development. The expression of cell-fate determining transcription factors orchestrates the establishment of the various lineages of the embryo. Gene expression is often regulated via specific chromatin organisation. To investigate cell type-specific differences in chromatin folding in early embryonic development, I used in vitro models of the two distinct cell populations in the blastocyst ICM. In mouse ES and XEN cells, I mapped 3D genome conformation using Genome Architecture Mapping (GAM), chromatin accessibility using ATAC-seq, and gene expression using total RNA-seq. To enable the mapping of 3D genome folding directly in the blastocyst ICM, I adapted GAM for cell type-specific selection of nuclei, by integrating immunofluorescence detection of markers, and generated the first genome-wide chromatin contact maps that distinguish ICM cell types. I report that the ES and XEN cell lineages undergo abundant large scale rearrangements of genome architecture and exhibit high numbers of differentially expressed genes. For example, extra-embryonic endoderm genes, such as Lama1 and Gata6, form silent hubs in ESCs, potentially connecting maintenance of pluripotency to 3D structure of the genome. Further, I show that the expression of XEN cell-specific genes relates to the formation of XEN cell-specific TAD boundaries. Chromatin contacts at the Sox2 locus exhibit an ESC-specific organisation around binding of pluripotency transcription factors OCT4, NANOG and SOX2, into hubs of high gene activity. The observations detected in in vitro models, were investigated in smaller GAM datasets produced using the in vivo counterparts in the ICM. Overall, in vivo data confirmed the high degree of chromatin rearrangement among the two cell types, specifically in loci of lineage driving genes. The findings from in vivo data further underscore the connection of genome topology and cellular identity.