Auswahl der wissenschaftlichen Literatur zum Thema „External gettering“

Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an

Wählen Sie eine Art der Quelle aus:

Machen Sie sich mit den Listen der aktuellen Artikel, Bücher, Dissertationen, Berichten und anderer wissenschaftlichen Quellen zum Thema "External gettering" bekannt.

Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.

Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.

Zeitschriftenartikel zum Thema "External gettering"

1

Hofstetter, Jasmin, Jean F. Lelièvre, Carlos del Cañizo und Antonio Luque. „Study of Internal versus External Gettering of Iron during Slow Cooling Processes for Silicon Solar Cell Fabrication“. Solid State Phenomena 156-158 (Oktober 2009): 387–93. http://dx.doi.org/10.4028/www.scientific.net/ssp.156-158.387.

Der volle Inhalt der Quelle
Annotation:
The eect of slow cooling after dierent high temperature treatments on the in- terstitial iron concentration and on the electron lifetime of p-type mc-Si wafers has been in- vestigated. The respective impacts of internal relaxation gettering and external segregation gettering of metal impurities during an extended phosphorous diusion gettering are studied. It is shown that the enhanced reduction of interstitial Fe during extended P-gettering is due to an enhanced segregation gettering while faster impurities like Cu and Ni are possibly reduced due to an internal gettering eect.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
2

Macdonald, Daniel, An Yao Liu und Sieu Pheng Phang. „External and Internal Gettering of Interstitial Iron in Silicon for Solar Cells“. Solid State Phenomena 205-206 (Oktober 2013): 26–33. http://dx.doi.org/10.4028/www.scientific.net/ssp.205-206.26.

Der volle Inhalt der Quelle
Annotation:
The removal of dissolved iron from the wafer bulk is important for the performance of p-type multicrystalline silicon solar cells. In this paper we review some recent progress in understanding both external and internal gettering of iron. Internal gettering at grain boundaries and dislocations occurs naturally during ingot cooling, and can also be driven further during cell processing, especially by moderate temperature anneals (usually below 700 °C). Internal gettering at intra-grain defects plays key a role during such precipitation annealing. External gettering to phosphorus diffused regions is crucial in reducing the dissolved iron concentration during cell processing, although its effectiveness depends strongly on the diffusion temperature and profile. Gettering of Fe by boron and aluminum diffusions is also found to be very effective under certain conditions.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
3

Martinuzzi, Santo, und Isabelle Périchaud. „External Gettering for Multicrystalline Silicon Wafers“. Solid State Phenomena 47-48 (Juli 1995): 153–64. http://dx.doi.org/10.4028/www.scientific.net/ssp.47-48.153.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
4

Lysáček, David, Jan Šik und Petr Bábor. „Polycrystalline Silicon Layers with Enhanced Thermal Stability“. Solid State Phenomena 178-179 (August 2011): 385–91. http://dx.doi.org/10.4028/www.scientific.net/ssp.178-179.385.

Der volle Inhalt der Quelle
Annotation:
We report on a new method of external gettering in silicon substrate for semiconductor applications. The proposed method is based on the deposition of a multilayer system formed by introducing a number of thin buried silicon oxide layers into the thick polycrystalline silicon layer deposited on the wafer backside. Oxide films of a few nanometer thicknesses significantly retard both the grain growth and subsequent loss of the gettering capability of the polycrystalline silicon layer during high temperature annealing. The mechanisms of the grain growth and the influence of the embedded oxide layers on the gettering function in the multilayer system are discussed. We used scanning electron microscopy and transmission electron microscopy for the characterization of the multilayer system, and intentional contamination for demonstration of the gettering properties.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
5

Périchaud, Isabelle, F. Floret, M. Stemmer und Santo Martinuzzi. „Phosphorus External Gettering Efficiency in Multicrystalline Silicon Wafers“. Solid State Phenomena 32-33 (Dezember 1993): 77–82. http://dx.doi.org/10.4028/www.scientific.net/ssp.32-33.77.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
6

Lysáček, David, Petr Kostelník und Petr Pánek. „Polycrystalline Silicon Gettering Layers with Controlled Residual Stress“. Solid State Phenomena 205-206 (Oktober 2013): 284–89. http://dx.doi.org/10.4028/www.scientific.net/ssp.205-206.284.

Der volle Inhalt der Quelle
Annotation:
We report on a novel method of low pressure chemical vapor deposition of polycrystalline silicon layers used for external gettering in silicon substrate for semiconductor applications. The proposed method allowed us to produce layers of polycrystalline silicon with pre-determined residual stress. The method is based on the deposition of a multilayer system formed by two layers. The first layer is intentionally designed to have tensile stress while the second layer has compressive stress. Opposite sign of the residual stresses of the individual layers enables to pre-determine the residual stress of the gettering stack. We used scanning electron microscopy for structural characterization of the layers and intentional contamination for demonstration of the gettering properties. Residual stress of the layers was calculated from the wafer curvature.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
7

Martinuzzi, Santo, I. Perichad und M. Stemmer. „External Gettering around Extended Defects in Multicrystalline Silicon Wafers“. Solid State Phenomena 37-38 (März 1994): 361–66. http://dx.doi.org/10.4028/www.scientific.net/ssp.37-38.361.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
8

Gay, N., und S. Martinuzzi. „External self-gettering of nickel in float zone silicon wafers“. Applied Physics Letters 70, Nr. 19 (12.05.1997): 2568–70. http://dx.doi.org/10.1063/1.118921.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
9

Hwan Kim, Yong, Ryosuke O. Suzuki, Hiroshi Numakura, Hirobumi Wada und Katsutoshi Ono. „Removal of oxygen and nitrogen from niobium by external gettering“. Journal of Alloys and Compounds 248, Nr. 1-2 (Februar 1997): 251–58. http://dx.doi.org/10.1016/s0925-8388(96)02679-5.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
10

Park, Hyomin, Sung Ju Tark, Chan Seok Kim, Sungeun Park, Young Do Kim, Chang-Sik Son, Jeong Chul Lee und Donghwan Kim. „Effect of the Phosphorus Gettering on Si Heterojunction Solar Cells“. International Journal of Photoenergy 2012 (2012): 1–7. http://dx.doi.org/10.1155/2012/794876.

Der volle Inhalt der Quelle
Annotation:
To improve the efficiency of crystalline silicon solar cells, should be collected the excess carrier as much as possible. Therefore, minimizing the recombination both at the bulk and surface regions is important. Impurities make recombination sites and they are the major reason for recombination. Phosphorus (P) gettering was introduced to reduce metal impurities in the bulk region of Si wafers and then to improve the efficiency of Si heterojunction solar cells fabricated on the wafers. Resistivity of wafers was measured by a four-point probe method. Fill factor of solar cells was measured by a solar simulator. Saturation current and ideality factor were calculated from a dark current density-voltage graph. External quantum efficiency was analyzed to assess the effect of P gettering on the performance of solar cells. Minority bulk lifetime measured by microwave photoconductance decay increases from 368.3 to 660.8 μs. Open-circuit voltage and short-circuit current density increase from 577 to 598 mV and 27.8 to 29.8 mA/cm2, respectively. The efficiency of solar cells increases from 11.9 to 13.4%. P gettering will be feasible to improve the efficiency of Si heterojunction solar cells fabricated on P-doped Si wafers.
APA, Harvard, Vancouver, ISO und andere Zitierweisen

Dissertationen zum Thema "External gettering"

1

Hayes, Maxim. „Intégration de collecteurs de charges avancés dans les cellules solaires bifaciales à haut rendement : vers un procédé générique pour les nouveaux matériaux silicium“. Electronic Thesis or Diss., Aix-Marseille, 2020. http://www.theses.fr/2020AIXM0519.

Der volle Inhalt der Quelle
Annotation:
L'industrie PV connaît un fort engouement pour les cellules PERC. Néanmoins leurs performances sont limitées par deux sources de recombinaison des porteurs de charge: au niveau de l'émetteur obtenu par diffusion de P, et en face arrière aux interfaces Al-Si. L'objectif principal de cette thèse vise à limiter ces pertes en intégrant deux nouveaux collecteurs. Le premier est un émetteur sélectif (ES) obtenu par implantation ionique à immersion plasma (PIII) de P. Le second concerne un contact passivé (CP) constitué d'un film de silicium polycristallin (poly-Si) dopé au B sur un oxyde mince. Dans un second temps, les travaux s'intéressent à la compatibilité entre ces collecteurs et les plaquettes de Si issues de lingots fabriqués par solidification dirigée. Un procédé de masquage in situ des implantations PIII a permis d'élaborer des ES avec une bonne maîtrise de la géométrie du motif et des niveaux de dopage. Ensuite, un éventail de techniques pour la métallisation du poly-Si(B) a été étudié. La voie de métallisation par sérigraphie de pâtes traversantes est la plus encourageante à l'heure actuelle. Elle permet l'utilisation de couches hydrogénantes non sacrificielles qui ont mené à l'obtention de précurseurs de cellules avec un excellent niveau de passivation. Néanmoins, la résistance de contact entre le métal et le poly-Si(B) demeure à ce jour trop élevée pour une intégration optimale. Enfin, l'association de Si multicristallin avec différents CP a montré la propension de ces derniers à générer un effet getter externe efficace. Cela laisse envisager une très bonne compatibilité entre l'architecture cellule développée et les Si bas-coût et à faible emprunte carbone
Thanks to a relatively simple fabrication process and high conversion efficiency values the PERC structure is well established at the industrial level. Nevertheless, industrial PERC solar cells performances are mostly limited by two charge carrier recombination sources: P thermally diffused emitter on the front side and the Al-Si interfaces at the rear contacts. The main goal of this work aims at limiting both recombination sources. A selective emitter (SE) obtained by plasma immersion ion implantation (PIII) is developed for an integration on the front side; whereas a B-doped polysilicon (poly-Si) on oxide passivated contact (PC) is integrated on the back side. The second goal of this work consists in evaluating the compatibility between these advanced carrier collectors and directionally solidified Si materials. SE featuring good geometrical properties and a well-controlled doping were fabricated thanks to an in situ localized doping process obtained with a specific mask developed for PIII. Besides, several metal deposition technologies were investigated for the poly-Si(B). Fire-through screen-printing appears as the most promising approach so far. Indeed, the deposition of a non-sacrificial hydrogen-rich layer allowed to reach an excellent surface passivation level for solar cell precursors. However, the specific contact resistivity obtained remains too high for an optimal cell integration. Lastly, the fabrication of poly-Si PC showed excellent external gettering efficiencies for multicrystalline Si. Thus, the potential of the developed cell structure to be integrated with low-cost and low carbon footprint materials is encouraging
APA, Harvard, Vancouver, ISO und andere Zitierweisen

Konferenzberichte zum Thema "External gettering"

1

Joshi, Subhash M., Roman Gafiteanu, Ulrich M. Gösele und Teh Y. Tan. „Simulations and experiments on external gettering of silicon“. In The 13th NREL photovoltaics program review meeting. AIP, 1996. http://dx.doi.org/10.1063/1.49382.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
2

Hieslmair, Henry, Scott A. McHugo und Eicke R. Weber. „External gettering of silicon materials containing various efficiency-limiting defects“. In The 13th NREL photovoltaics program review meeting. AIP, 1996. http://dx.doi.org/10.1063/1.49431.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
3

Martinuzzi, S., H. El Ghitani, D. Sarti und P. Torchio. „Influence of phosphorus external gettering on recombination activity and passivation of defects in polycrystalline silicon“. In Conference Record of the Twentieth IEEE Photovoltaic Specialists Conference. IEEE, 1988. http://dx.doi.org/10.1109/pvsc.1988.105975.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
4

Mishra, Kamal K., Mark Stinson und John K. Lowell. „Influence of oxygen-iron interaction on the external gettering of Fe in p-Si by polycrystalline silicon film“. In Microelectronic Manufacturing '95, herausgegeben von John K. Lowell, Ray T. Chen und Jagdish P. Mathur. SPIE, 1995. http://dx.doi.org/10.1117/12.221189.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
Wir bieten Rabatte auf alle Premium-Pläne für Autoren, deren Werke in thematische Literatursammlungen aufgenommen wurden. Kontaktieren Sie uns, um einen einzigartigen Promo-Code zu erhalten!

Zur Bibliographie