Inhaltsverzeichnis

  1. Zeitschriftenartikel

Auswahl der wissenschaftlichen Literatur zum Thema „Extension bases“

Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an

Wählen Sie eine Art der Quelle aus:

Machen Sie sich mit den Listen der aktuellen Artikel, Bücher, Dissertationen, Berichten und anderer wissenschaftlichen Quellen zum Thema "Extension bases" bekannt.

Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.

Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.

Zeitschriftenartikel zum Thema "Extension bases"

1

Chen, Yuqun. "Gröbner–Shirshov Bases for Extensions of Algebras." Algebra Colloquium 16, no. 02 (2009): 283–92. http://dx.doi.org/10.1142/s1005386709000285.

Der volle Inhalt der Quelle
Annotation:
An algebra [Formula: see text] is called an extension of the algebra M by B if M2 = 0, M is an ideal of [Formula: see text] and [Formula: see text] as algebras. In this paper, by using Gröbner–Shirshov bases, we characterize completely the extensions of M by B. An algorithm to find the conditions of an algebra A to be an extension of M by B is obtained.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
2

Hantash, Ra’edOmar Abu, and Mohammed H. AbuH Abu Yunis. "Distal extension bases: Removable partial dentures." Journal of Indian Prosthodontic Society 9, no. 4 (2009): 186. http://dx.doi.org/10.4103/0972-4052.206949.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
3

Antoniou, G., and C. K. MacNish. "Conservative extension concepts for nonmonotonic knowledge bases." International Journal of Intelligent Systems 15, no. 9 (2000): 859–77. http://dx.doi.org/10.1002/1098-111x(200009)15:9<859::aid-int3>3.0.co;2-e.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
4

Zhang, Aixian, and Keqin Feng. "Normal Bases on Galois Ring Extensions." Symmetry 10, no. 12 (2018): 702. http://dx.doi.org/10.3390/sym10120702.

Der volle Inhalt der Quelle
Annotation:
Normal bases are widely used in applications of Galois fields and Galois rings in areas such as coding, encryption symmetric algorithms (block cipher), signal processing, and so on. In this paper, we study the normal bases for Galois ring extension R / Z p r , where R = GR ( p r , n ) . We present a criterion on the normal basis for R / Z p r and reduce this problem to one of finite field extension R ¯ / Z ¯ p r = F q / F p ( q = p n ) by Theorem 1. We determine all optimal normal bases for Galois ring extension.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
5

Boveda, Eugenia. "Reseña / Comunicación y Chagas. Bases para un diálogo urgente." +E: Revista de Extensión Universitaria, no. 16.Ene-Jun (June 9, 2022): e0004. http://dx.doi.org/10.14409/extension.2022.16.ene-jun.e0004.

Der volle Inhalt der Quelle
Annotation:
Se trata de una recopilación de reflexiones y recomendaciones que surgieron, desde Argentina, a partir de la organización del 1° Conversatorio sobre Comunicación y Chagas (14 de abril de 2020), entre integrantes del grupo ¿De qué hablamos cuando hablamos de Chagas?, el Programa Nacional de Chagas del Ministerio de Salud de la Nación Argentina y la Universidad Nacional del Litoral, junto a una diversidad de actores sociales de distintos puntos del país y del exterior.Este libro pretende ser una herramienta clave para lograr un cambio en la percepción social del Chagas, con el propósito de que cada vez sean más las voces que hablen del tema desde perspectivas críticas, contextualizadas y multidimensionales. Asimismo, constituye un material de consulta para todas aquellas personas interesadas y/o vinculadas con esta problemática, cualquiera sea el ámbito o disciplina de abordaje y el contexto donde este vínculo tenga lugar. En particular, la extensión universitaria resulta un escenario clave por los diálogos que la misma habilita entre actores y saberes diversos.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
6

PICKETT, ERIK JARL. "CONSTRUCTION OF SELF-DUAL INTEGRAL NORMAL BASES IN ABELIAN EXTENSIONS OF FINITE AND LOCAL FIELDS." International Journal of Number Theory 06, no. 07 (2010): 1565–88. http://dx.doi.org/10.1142/s1793042110003654.

Der volle Inhalt der Quelle
Annotation:
Let F/E be a finite Galois extension of fields with abelian Galois group Γ. A self-dual normal basis for F/E is a normal basis with the additional property that Tr F/E(g(x), h(x)) = δg, h for g, h ∈ Γ. Bayer-Fluckiger and Lenstra have shown that when char (E) ≠ 2, then F admits a self-dual normal basis if and only if [F : E] is odd. If F/E is an extension of finite fields and char (E) = 2, then F admits a self-dual normal basis if and only if the exponent of Γ is not divisible by 4. In this paper, we construct self-dual normal basis generators for finite extensions of finite fields whenever they exist. Now let K be a finite extension of ℚp, let L/K be a finite abelian Galois extension of odd degree and let [Formula: see text] be the valuation ring of L. We define AL/K to be the unique fractional [Formula: see text]-ideal with square equal to the inverse different of L/K. It is known that a self-dual integral normal basis exists for AL/K if and only if L/K is weakly ramified. Assuming p ≠ 2, we construct such bases whenever they exist.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
7

KOO, JA KYUNG, DONG HWA SHIN, and DONG SUNG YOON. "NORMAL BASES FOR MODULAR FUNCTION FIELDS." Bulletin of the Australian Mathematical Society 95, no. 3 (2017): 384–92. http://dx.doi.org/10.1017/s0004972716001362.

Der volle Inhalt der Quelle
Annotation:
We provide a concrete example of a normal basis for a finite Galois extension which is not abelian. More precisely, let $\mathbb{C}(X(N))$ be the field of meromorphic functions on the modular curve $X(N)$ of level $N$. We construct a completely free element in the extension $\mathbb{C}(X(N))/\mathbb{C}(X(1))$ by means of Siegel functions.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
8

Mehta, Ritu, and Sanket Agrawal. "Embracing the organic way: is consumer preference the same for all brands?" International Journal of Retail & Distribution Management 48, no. 5 (2020): 453–64. http://dx.doi.org/10.1108/ijrdm-09-2019-0311.

Der volle Inhalt der Quelle
Annotation:
PurposeThe growing market for organic products presents a tremendous opportunity for marketers to extend their existing brands. However, there is hardly any research that investigates the factors extension from an organic parent brand is preferred over extension into same product category for success of such brand extensions. This paper investigates the role of two different bases consumers may use to evaluate the extension into organic product – organic status of the parent brand and its similarity to the extended product category.Design/methodology/approachThe study involved a 2 × 2 (organic versus regular parent brand and same versus different product category) between-subjects factorial design. Data collected from 164 postgraduate students presented with one of the four scenarios were analysed using ANOVA.FindingsThe results reveal that extensions from organic parent brand versus regular brand, and in the same product category versus different category, are evaluated more favourably. Moreover, extension from an organic parent brand is preferred over extension into same product category.Originality/valueThe research contributes to the extant literature on branding and retailing by building on categorisation theory to explain consumer preference for brand extension when launching a new organic product. The findings provide valuable insights to practitioners to launch a new organic product using brand extension.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
9

Capps, Richard H. "Extension and replacement bases for semisimple Lie algebras." Journal of Mathematical Physics 27, no. 4 (1986): 914–23. http://dx.doi.org/10.1063/1.527164.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
10

Jouini, Abdellatif, and Khalifa Trimèche. "Biorthogonal multiresolution analyses and decompositions of Sobolev spaces." International Journal of Mathematics and Mathematical Sciences 28, no. 9 (2001): 517–34. http://dx.doi.org/10.1155/s0161171201010936.

Der volle Inhalt der Quelle
Annotation:
The object of this paper is to construct extension operators in the Sobolev spacesHk(]−∞,0])andHk([0,+∞[)(k≥0). Then we use these extensions to get biorthogonal wavelet bases inHk(ℝ). We also give a construction inL2([−1,1])to see how to obtain boundaries functions.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
Mehr Quellen
Wir bieten Rabatte auf alle Premium-Pläne für Autoren, deren Werke in thematische Literatursammlungen aufgenommen wurden. Kontaktieren Sie uns, um einen einzigartigen Promo-Code zu erhalten!

Zur Bibliographie