Inhaltsverzeichnis
Auswahl der wissenschaftlichen Literatur zum Thema „Exponential Family of distribution“
Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an
Machen Sie sich mit den Listen der aktuellen Artikel, Bücher, Dissertationen, Berichten und anderer wissenschaftlichen Quellen zum Thema "Exponential Family of distribution" bekannt.
Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.
Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.
Zeitschriftenartikel zum Thema "Exponential Family of distribution"
Mahmoud, Mahmoud Riad, Moshera A. M. Ahmad und AzzaE Ismail. „T-Inverse Exponential Family Of Distributions“. Journal of University of Shanghai for Science and Technology 23, Nr. 09 (13.09.2021): 556–72. http://dx.doi.org/10.51201/jusst/21/08495.
Der volle Inhalt der QuelleMakubate, Boikanyo, Broderick O. Oluyede, Gofaone Motobetso, Shujiao Huang und Adeniyi F. Fagbamigbe. „The Beta Weibull-G Family of Distributions: Model, Properties and Application“. International Journal of Statistics and Probability 7, Nr. 2 (18.01.2018): 12. http://dx.doi.org/10.5539/ijsp.v7n2p12.
Der volle Inhalt der QuelleBlock, Henry W., Naftali A. Langberg und Thomas H. Savits. „A MIXTURE OF EXPONENTIAL AND IFR GAMMA DISTRIBUTIONS HAVING AN UPSIDEDOWN BATHTUB-SHAPED FAILURE RATE“. Probability in the Engineering and Informational Sciences 26, Nr. 4 (30.07.2012): 573–80. http://dx.doi.org/10.1017/s0269964812000204.
Der volle Inhalt der QuelleLouzada, Francisco, Vitor Marchi und James Carpenter. „The Complementary Exponentiated Exponential Geometric Lifetime Distribution“. Journal of Probability and Statistics 2013 (2013): 1–12. http://dx.doi.org/10.1155/2013/502159.
Der volle Inhalt der QuelleGhorbanpour, Samereh, Rahim Chinipardaz und Seyed Mohammad Reza Alavi. „Form-Invariance of the Non-Regular Exponential Family of Distributions“. Revista Colombiana de Estadística 41, Nr. 2 (01.07.2018): 157–72. http://dx.doi.org/10.15446/rce.v41n2.62233.
Der volle Inhalt der QuelleIwasaki, Masakazu, und Hiroe Tsubaki. „A new bivariate distribution in natural exponential family“. Metrika 61, Nr. 3 (Juni 2005): 323–36. http://dx.doi.org/10.1007/s001840400348.
Der volle Inhalt der QuelleAbdulkadir, Dr Sauta Saidu, J. Jerry und T. G. Ieren. „STATISTICAL PROPERTIES OF LOMAX-INVERSE EXPONENTIAL DISTRIBUTION AND APPLICATIONS TO REAL LIFE DATA“. FUDMA JOURNAL OF SCIENCES 4, Nr. 2 (07.10.2020): 680–94. http://dx.doi.org/10.33003/fjs-2020-0402-435.
Der volle Inhalt der QuelleZubair, Muhammad, Ayman Alzaatreh, Gauss Cordeiro, M. H. Tahir und Muhammad Mansoor. „On generalized classes of exponential distribution using T-X family framework“. Filomat 32, Nr. 4 (2018): 1259–72. http://dx.doi.org/10.2298/fil1804259z.
Der volle Inhalt der QuelleAbouelmagd, T. H. M. „The Logarithmic Burr-Hatke Exponential Distribution for Modeling Reliability and Medical Data“. International Journal of Statistics and Probability 7, Nr. 5 (09.08.2018): 73. http://dx.doi.org/10.5539/ijsp.v7n5p73.
Der volle Inhalt der QuelleBilal, Muhammad, Muhammad Mohsin und Muhammad Aslam. „Weibull-Exponential Distribution and Its Application in Monitoring Industrial Process“. Mathematical Problems in Engineering 2021 (26.03.2021): 1–13. http://dx.doi.org/10.1155/2021/6650237.
Der volle Inhalt der QuelleDissertationen zum Thema "Exponential Family of distribution"
Lai, Yanzhao. „Generalized method of moments exponential distribution family“. View electronic thesis (PDF), 2009. http://dl.uncw.edu/etd/2009-2/laiy/yanzhaolai.pdf.
Der volle Inhalt der QuelleHornik, Kurt, und Bettina Grün. „On standard conjugate families for natural exponential families with bounded natural parameter space“. Elsevier, 2014. http://dx.doi.org/10.1016/j.jmva.2014.01.003.
Der volle Inhalt der QuelleWang, Zhizheng. „Hardware Utilization Measurement and Optimization: A Statistical Investigation and Simulation Study“. Thesis, Uppsala universitet, Statistiska institutionen, 2015. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-260070.
Der volle Inhalt der QuelleRuddy, Sean Matthew. „Shrinkage of dispersion parameters in the double exponential family of distributions, with applications to genomic sequencing“. Thesis, University of California, Berkeley, 2015. http://pqdtopen.proquest.com/#viewpdf?dispub=3686002.
Der volle Inhalt der QuelleThe prevalence of sequencing experiments in genomics has led to an increased use of methods for count data in analyzing high-throughput genomic data to perform analyses. The importance of shrinkage methods in improving the performance of statistical methods remains. A common example is that of gene expression data, where the counts per gene are often modeled as some form of an overdispersed Poisson. In this case, shrinkage estimates of the per-gene dispersion parameter have lead to improved estimation of dispersion in the case of a small number of samples. We address a different count setting introduced by the use of sequencing data: comparing differential proportional usage via an overdispersed binomial model. Such a model can be useful for testing differential exon inclusion in mRNA-Seq experiments in addition to the typical differential gene expression analysis. In this setting, there are fewer such shrinkage methods for the dispersion parameter. We introduce a novel method that is developed by modeling the dispersion based on the double exponential family of distributions proposed by Efron (1986), also known as the exponential dispersion model (Jorgensen, 1987). Our methods (WEB-Seq and DEB-Seq) are empirical bayes strategies for producing a shrunken estimate of dispersion that can be applied to any double exponential dispersion family, though we focus on the binomial and poisson. These methods effectively detect differential proportional usage, and have close ties to the weighted likelihood strategy of edgeR developed for gene expression data (Robinson and Smyth, 2007; Robinson et al., 2010). We analyze their behavior on simulated data sets as well as real data for both differential exon usage and differential gene expression. In the exon usage case, we will demonstrate our methods' superior ability to control the FDR and detect truly different features compared to existing methods. In the gene expression setting, our methods fail to control the FDR; however, the rankings of the genes by p-value is among the top performers and proves to be robust to both changes in the probability distribution used to generate the counts and in low sample size situations. We provide implementation of our methods in the R package DoubleExpSeq available from the Comprehensive R Archive Network (CRAN).
Ibukun, Michael Abimbola. „Modely s Touchardovým rozdělením“. Master's thesis, Vysoké učení technické v Brně. Fakulta strojního inženýrství, 2021. http://www.nusl.cz/ntk/nusl-445468.
Der volle Inhalt der QuelleOkada, Daigo. „Decomposition of a set of distributions in extended exponential family form for distinguishing multiple oligo-dimensional marker expression profiles of single-cell populations and visualizing their dynamics“. Doctoral thesis, Kyoto University, 2021. http://hdl.handle.net/2433/263569.
Der volle Inhalt der QuelleSears, Timothy Dean, und tim sears@biogreenoil com. „Generalized Maximum Entropy, Convexity and Machine Learning“. The Australian National University. Research School of Information Sciences and Engineering, 2008. http://thesis.anu.edu.au./public/adt-ANU20090525.210315.
Der volle Inhalt der QuelleGutierrez-Pena, Eduardo Arturo. „Bayesian topics relating to the exponential family“. Thesis, Imperial College London, 1995. http://hdl.handle.net/10044/1/8062.
Der volle Inhalt der QuelleKosmidis, Ioannis. „Bias reduction in exponential family nonlinear models“. Thesis, University of Warwick, 2007. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.492241.
Der volle Inhalt der QuelleSilva, Michel Ferreira da. „Estimação e teste de hipótese baseados em verossimilhanças perfiladas“. Universidade de São Paulo, 2005. http://www.teses.usp.br/teses/disponiveis/45/45133/tde-06122006-162733/.
Der volle Inhalt der QuelleThe profile likelihood function is not genuine likelihood function, and profile maximum likelihood estimators are typically inefficient and inconsistent. Additionally, the null distribution of the likelihood ratio test statistic can be poorly approximated by the asymptotic chi-squared distribution in finite samples when there are nuisance parameters. It is thus important to obtain adjustments to the likelihood function. Several authors, including Barndorff-Nielsen (1983,1994), Cox and Reid (1987,1992), McCullagh and Tibshirani (1990) and Stern (1997), have proposed modifications to the profile likelihood function. They are defined in a such a way to reduce the score and information biases. In this dissertation, we review several profile likelihood adjustments and also approximations to the adjustments proposed by Barndorff-Nielsen (1983,1994), also described in Severini (2000a). We present derivations and the main properties of the different adjustments. We also obtain adjustments for likelihood-based inference in the two-parameter exponential family. Numerical results on estimation and testing are provided. We also consider models that do not belong to the two-parameter exponential family: the GA0(alfa,gama,L) family, which is commonly used to model image radar data, and the Weibull model, which is useful for reliability studies, the latter under both noncensored and censored data. Again, extensive numerical results are provided. It is noteworthy that, in the context of the GA0(alfa,gama,L) model, we have evaluated the approximation of the null distribution of the signalized likelihood ratio statistic by the standard normal distribution. Additionally, we have obtained distributional results for the Weibull case concerning the maximum likelihood estimators and the likelihood ratio statistic both for noncensored and censored data.
Bücher zum Thema "Exponential Family of distribution"
Lye, Jenny N. Approximating distributions using the generalized exponential family. Parkville, Vic: Dept. of Economics, University of Melbourne, 1991.
Den vollen Inhalt der Quelle findenMartin, Vance L. A generalized parametric exponential family approach to modelling the distribution of exchange rate movements. Parkville, Vic: Dept. of Economics, University of Melbourne, 1991.
Den vollen Inhalt der Quelle findenHamedani, G. G. (Gholamhossein G.), Hrsg. Exponential distribution: Theory and methods. Hauppauge, N.Y: Nova Science Publishers, 2009.
Den vollen Inhalt der Quelle findenExponential family nonlinear models. Singapore: Springer, 1998.
Den vollen Inhalt der Quelle findenCharacterization problems associated with the exponential distribution. New York: Springer-Verlag, 1986.
Den vollen Inhalt der Quelle findenAzlarov, T. A., und N. A. Volodin. Characterization Problems Associated with the Exponential Distribution. Herausgegeben von Ingram Olkin. New York, NY: Springer New York, 1986. http://dx.doi.org/10.1007/978-1-4612-4956-6.
Der volle Inhalt der QuelleSeshadri, V. The inverse Gaussian distribution: A case study in exponential families. Oxford: Clarendon Press, 1993.
Den vollen Inhalt der Quelle findenChun, Jin, und Lim Wooi K, Hrsg. Handbook of exponential and related distributions for engineers and scientists. Boca Raton, FL: Chapman & Hall/CRC, 2005.
Den vollen Inhalt der Quelle findenPal, Nabendu. Handbook of exponential and related distributions for engineers and scientists. Boca Raton, FL: Chapman & Hall/CRC, 2006.
Den vollen Inhalt der Quelle findenJasso, Guillermina. A new continuous distribution and two new families of distributions based on the exponential. Bonn, Germany: IZA, 2007.
Den vollen Inhalt der Quelle findenBuchteile zum Thema "Exponential Family of distribution"
AL-Hussaini, Essam K., und Mohammad Ahsanullah. „Family of Exponentiated Exponential Distribution“. In Atlantis Studies in Probability and Statistics, 81–102. Paris: Atlantis Press, 2015. http://dx.doi.org/10.2991/978-94-6239-079-9_4.
Der volle Inhalt der QuelleIslam, M. Ataharul, und Rafiqul I. Chowdhury. „Exponential Family of Distributions“. In Analysis of Repeated Measures Data, 23–30. Singapore: Springer Singapore, 2017. http://dx.doi.org/10.1007/978-981-10-3794-8_3.
Der volle Inhalt der QuelleHaberman, Shelby J. „Exponential Family Distributions Relevant to IRT“. In Handbook of Item Response Theory, 47–70. Boca Raton, FL: CRC Press, 2015- | Series: Chapman & Hall/CRC Statistics in the Social and Behavioral Sciences.: Chapman and Hall/CRC, 2017. http://dx.doi.org/10.1201/b19166-4.
Der volle Inhalt der QuelleDobson, Annette J. „Exponential family of distributions and generalized linear models“. In An Introduction to Generalized Linear Models, 26–35. Boston, MA: Springer US, 1990. http://dx.doi.org/10.1007/978-1-4899-7252-1_3.
Der volle Inhalt der QuelleZamzami, Nuha, und Nizar Bouguila. „Deriving Probabilistic SVM Kernels from Exponential Family Approximations to Multivariate Distributions for Count Data“. In Unsupervised and Semi-Supervised Learning, 125–53. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-23876-6_7.
Der volle Inhalt der QuelleChen, (Din) Ding-Geng, und Yuhlong Lio. „A Family of Generalized Rayleigh-Exponential-Weibull Distribution and Its Application to Modeling the Progressively Type-I Interval Censored Data“. In Emerging Topics in Statistics and Biostatistics, 529–43. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-42196-0_23.
Der volle Inhalt der QuelleGupta, Arjun K., Wei-Bin Zeng und Yanhong Wu. „Exponential Distribution“. In Probability and Statistical Models, 23–43. Boston, MA: Birkhäuser Boston, 2010. http://dx.doi.org/10.1007/978-0-8176-4987-6_2.
Der volle Inhalt der QuelleSingh, Vijay P. „Exponential Distribution“. In Entropy-Based Parameter Estimation in Hydrology, 49–55. Dordrecht: Springer Netherlands, 1998. http://dx.doi.org/10.1007/978-94-017-1431-0_4.
Der volle Inhalt der QuelleSundberg, Rolf. „Exponential Family Models“. In International Encyclopedia of Statistical Science, 490–93. Berlin, Heidelberg: Springer Berlin Heidelberg, 2011. http://dx.doi.org/10.1007/978-3-642-04898-2_243.
Der volle Inhalt der QuelleZerom, Dawit, und Zvi Drezner. „A Bivariate Exponential Distribution“. In Contributions to Location Analysis, 343–65. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-19111-5_14.
Der volle Inhalt der QuelleKonferenzberichte zum Thema "Exponential Family of distribution"
Malagò, Luigi, Matteo Matteucci und Giovanni Pistone. „Towards the geometry of estimation of distribution algorithms based on the exponential family“. In the 11th workshop proceedings. New York, New York, USA: ACM Press, 2011. http://dx.doi.org/10.1145/1967654.1967675.
Der volle Inhalt der QuelleElkan, Charles. „Clustering documents with an exponential-family approximation of the Dirichlet compound multinomial distribution“. In the 23rd international conference. New York, New York, USA: ACM Press, 2006. http://dx.doi.org/10.1145/1143844.1143881.
Der volle Inhalt der QuelleCheung, V. C. K., und M. C. Tresch. „Non-negative matrix factorization algorithms modeling noise distributions within the exponential family“. In 2005 IEEE Engineering in Medicine and Biology 27th Annual Conference. IEEE, 2005. http://dx.doi.org/10.1109/iembs.2005.1615595.
Der volle Inhalt der QuelleAbernethy, Jacob, Sindhu Kutty, Sébastien Lahaie und Rahul Sami. „Information aggregation in exponential family markets“. In EC '14: ACM Conference on Economics and Computation. New York, NY, USA: ACM, 2014. http://dx.doi.org/10.1145/2600057.2602896.
Der volle Inhalt der QuelleSabeti, Elyas, und Anders Host-Madsen. „Atypicality for the class of exponential family“. In 2016 54th Annual Allerton Conference on Communication, Control, and Computing (Allerton). IEEE, 2016. http://dx.doi.org/10.1109/allerton.2016.7852292.
Der volle Inhalt der QuelleShi, Zheyuan, und Sindhu Kutty. „Strategic reporting in exponential family prediction markets“. In 2016 IEEE MIT Undergraduate Research Technology Conference (URTC). IEEE, 2016. http://dx.doi.org/10.1109/urtc.2016.8284063.
Der volle Inhalt der QuelleAbbasnejad, Iman, M. Javad Zomorodian, M. Amin Abbasnejad und Hossein Ajdari. „Pose recognition using mixture of exponential family“. In 2012 16th CSI International Symposium on Artificial Intelligence and Signal Processing (AISP). IEEE, 2012. http://dx.doi.org/10.1109/aisp.2012.6313760.
Der volle Inhalt der QuelleRish, Irina, und Genady Grabarnik. „Sparse signal recovery with exponential-family noise“. In 2009 47th Annual Allerton Conference on Communication, Control, and Computing (Allerton). IEEE, 2009. http://dx.doi.org/10.1109/allerton.2009.5394837.
Der volle Inhalt der QuellePratama, B. N., S. Nurrohmah und I. Fithriani. „Composite Exponential-Pareto distribution“. In PROCEEDINGS OF THE 6TH INTERNATIONAL SYMPOSIUM ON CURRENT PROGRESS IN MATHEMATICS AND SCIENCES 2020 (ISCPMS 2020). AIP Publishing, 2021. http://dx.doi.org/10.1063/5.0059049.
Der volle Inhalt der QuelleVarshney, Lav R. „Two way communication over exponential family type channels“. In 2013 IEEE International Symposium on Information Theory (ISIT). IEEE, 2013. http://dx.doi.org/10.1109/isit.2013.6620735.
Der volle Inhalt der QuelleBerichte der Organisationen zum Thema "Exponential Family of distribution"
Gupta, Shanti S., und Jianjun Li. Empirical Bayes Tests For Some Non-Exponential Distribution Family. Fort Belvoir, VA: Defense Technical Information Center, August 1999. http://dx.doi.org/10.21236/ada370172.
Der volle Inhalt der QuelleLiang, TaChen. On a Sequential Subset Selection Procedure for Exponential Family Distributions. Fort Belvoir, VA: Defense Technical Information Center, Mai 1988. http://dx.doi.org/10.21236/ada200013.
Der volle Inhalt der QuelleKay, Steven, Haibo He und Quan Ding. The Exponentially Embedded Family of Distributions for Effective Data Representation, Information Extraction, and Decision Making. Fort Belvoir, VA: Defense Technical Information Center, März 2013. http://dx.doi.org/10.21236/ada582481.
Der volle Inhalt der QuelleGupta, Shanti S., und Jianjun Li. On Empirical Bayes Procedures for Selecting Good Populations in Positive Exponential Family. Fort Belvoir, VA: Defense Technical Information Center, August 2001. http://dx.doi.org/10.21236/ada395254.
Der volle Inhalt der QuelleGupta, Shanti S., und Friedrich Liese. Asymptotic Distribution of the Random Regret Risk for Selecting Exponential Populations. Fort Belvoir, VA: Defense Technical Information Center, April 1998. http://dx.doi.org/10.21236/ada358189.
Der volle Inhalt der QuelleKaplow, Louis. Optimal Distribution and Taxation of the Family. Cambridge, MA: National Bureau of Economic Research, Oktober 1992. http://dx.doi.org/10.3386/w4189.
Der volle Inhalt der QuelleDube, Arindrajit. Minimum Wages and the Distribution of Family Incomes. Cambridge, MA: National Bureau of Economic Research, November 2018. http://dx.doi.org/10.3386/w25240.
Der volle Inhalt der QuellePhillips, James, Wendy Greene und Elizabeth Jackson. Lessons from community-based distribution of family planning in Africa. Population Council, 1999. http://dx.doi.org/10.31899/pgy6.1022.
Der volle Inhalt der QuelleMaggwa, Baker, Ian Askew, Caroline Marangwanda, Ronika Nyakauru und Barbara Janowitz. An assessment of the Zimbabwe National Family Planning Council's community based distribution programme. Population Council, 2001. http://dx.doi.org/10.31899/rh4.1225.
Der volle Inhalt der QuelleBartik, Timothy J. The Effects of Metropolitan Job Growth on the Size Distribution of Family Income. W.E. Upjohn Institute, März 1991. http://dx.doi.org/10.17848/wp91-06.
Der volle Inhalt der Quelle