Inhaltsverzeichnis
Auswahl der wissenschaftlichen Literatur zum Thema „Explosion de gaz“
Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an
Machen Sie sich mit den Listen der aktuellen Artikel, Bücher, Dissertationen, Berichten und anderer wissenschaftlichen Quellen zum Thema "Explosion de gaz" bekannt.
Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.
Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.
Zeitschriftenartikel zum Thema "Explosion de gaz"
Andriamanalina, Drouot, und Alain Merlen. „Explosion violente anisotrope dans un gaz stratifié“. Comptes Rendus de l'Académie des Sciences - Series IIB - Mechanics-Physics-Chemistry-Astronomy 324, Nr. 5 (März 1997): 307–13. http://dx.doi.org/10.1016/s1251-8069(99)80039-6.
Der volle Inhalt der QuelleBouhours, G., B. Tesson, S. De Bourmont, G. Lorimier und J. C. Granry. „Explosion peropératoire de gaz intestinaux : à propos d’un cas“. Annales Françaises d'Anesthésie et de Réanimation 22, Nr. 4 (April 2003): 366–68. http://dx.doi.org/10.1016/s0750-7658(03)00062-5.
Der volle Inhalt der QuellePrunet, Bertrand, Olivier Stibbe, Guillaume Burlaton, Benoit Frattini, Olivier Yavari, Anne-Lise Marmoser und Michel Bignand. „Explosion due au gaz le 12 janvier 2019 rue de Trévise a Paris“. Médecine de Catastrophe - Urgences Collectives 4, Nr. 2 (Juni 2020): 93–95. http://dx.doi.org/10.1016/j.pxur.2020.04.001.
Der volle Inhalt der QuelleKashevarova, Galina, und Andrey Pepelyaev. „Numerical Simulation of Domestic Gas Deflagration Explosion and Verification of Computational Techniques“. Advanced Materials Research 742 (August 2013): 3–7. http://dx.doi.org/10.4028/www.scientific.net/amr.742.3.
Der volle Inhalt der QuelleJing, Guoxun, Yue Sun, Chuang Liu und Shaoshuai Guo. „Investigation of the suppression effect of inert dust on the pressure characteristics of gas coal dust explosion“. Thermal Science, Nr. 00 (2024): 95. http://dx.doi.org/10.2298/tsci231209095j.
Der volle Inhalt der QuelleLee, Kwanwoo, und Chankyu Kang. „Expansion of Next-Generation Sustainable Clean Hydrogen Energy in South Korea: Domino Explosion Risk Analysis and Preventive Measures Due to Hydrogen Leakage from Hydrogen Re-Fueling Stations Using Monte Carlo Simulation“. Sustainability 16, Nr. 9 (24.04.2024): 3583. http://dx.doi.org/10.3390/su16093583.
Der volle Inhalt der QuelleKOMAROV, A. A., und E. V. BAZHINA. „The impact of gas-dynamic flows accompanying emergency explosions on buildings and structures“. Prirodoobustrojstvo, Nr. 1 (2022): 84–92. http://dx.doi.org/10.26897/1997-6011-2022-1-84-92.
Der volle Inhalt der QuelleLi, Dong, Shijie Dai und Hongwei Zheng. „Investigation of the explosion characteristics of ethylene-air premixed gas in flameproof enclosures by using numerical simulations“. Thermal Science, Nr. 00 (2022): 189. http://dx.doi.org/10.2298/tsci220905189l.
Der volle Inhalt der QuelleLiu, Yan, Lin Chen, Xuting Wang, Yaqi Zhao, Zhen Zhao, Chen Zhang und Jinghan Xu. „Study on Overpressure Explosion of Oil and Gas Pipelines and Risk Prevention & Control Measures“. Journal of Physics: Conference Series 2520, Nr. 1 (01.06.2023): 012028. http://dx.doi.org/10.1088/1742-6596/2520/1/012028.
Der volle Inhalt der QuelleBurton, Mike, Catherine Hayer, Craig Miller und Bruce Christenson. „Insights into the 9 December 2019 eruption of Whakaari/White Island from analysis of TROPOMI SO2 imagery“. Science Advances 7, Nr. 25 (Juni 2021): eabg1218. http://dx.doi.org/10.1126/sciadv.abg1218.
Der volle Inhalt der QuelleDissertationen zum Thema "Explosion de gaz"
Khalili, Imad. „Sensibilité, sévérité et spécificités des explosions de mélanges hybrides gaz/vapeurs/poussières“. Thesis, Université de Lorraine, 2012. http://www.theses.fr/2012LORR0088/document.
Der volle Inhalt der QuelleThe explosion sensitivity and severity of various gas/vapor-dust mixtures have been studied thanks to specifically modified apparatuses based on a 20 L sphere and a Hartmann tube. The specificities of gas/dust hybrid mixtures explosions have been highlighted. In fact, even for gas concentrations lower than the lower explosivity limit (LEL), the ignition probability and the explosion severity can be greatly increased, which will notably lead to great changes in the Ex zones determination. For instance, it has been shown that such mixtures can be explosive when both the dust and gas concentrations are below their respective minimum explosive concentration and LEL. Moreover, synergistic effects have been observed and the rate of pressure rise of hybrid mixtures can be greater than those of the pure gases themselves. The origins of these specificities should not be sought in the modification of a single parameter, but could probably be attributed to combined impacts on hydrodynamics (flame propagation), thermal transfer and combustion kinetics. Experiments have been carried out in order to underline the significance of each contribution. Based on classical shrinking core models taking into account the various limitations during a non-catalytic gas/solid reaction and on homogeneous combustion for gases, a model has been developed to represent the time evolution of the explosion pressure for such mixtures
Vanbersel, Benjamin. „Méthodes de raffinement de maillage automatique pour la simulation aux grandes échelles d'explosions de gaz“. Electronic Thesis or Diss., Université de Toulouse (2023-....), 2024. http://www.theses.fr/2024TLSEP085.
Der volle Inhalt der QuelleThe global energy demand continues to rise, and is largely met through combustion, using fossil or renewable fuels. These fuels, often stored in enclosed environments, pose a significant hazard in the event of a leak. The ignition of a premixed gas cloud can lead to an explosion, causing rapid flame front propagation and generating dangerous overpressures that threaten both human life and infrastructure integrity. To understand and prevent these explosions, various experiments are conducted, ranging from laboratory tests to industrial-scale simulations. However, extreme conditions of temperature and pressure make it challenging to obtain accurate diagnostics experimentally.Numerical simulation, especially Large Eddy Simulation (LES), complements these experiments by providing a better understanding of combustion and turbulence phenomena at stake. LES has already proven effective in replicating the dynamics of deflagrations and the associated overpressures in small domains. It also allows for precise diagnostics at every point within the computational domain. However, the large dimensions of industrial installations raise challenges for a complete numerical resolution of the physical phenomena involved. An homogeneous discretisation of the entire computational domain would be too costly in terms of return time and computational resources. Therefore, mesh adaptation, particularly dynamic adaptation, is used to refine the discretisation in regions of interest that evolve during the calculation. This technique helps reduce mesh size and computational costs by tracking predefined phenomena of interest during their propagation.This thesis focuses on the development and validation of an adaptive mesh refinement (AMR) method for LES simulations of deflagrations, based on instantaneous physical criteria relevant to explosions. The proposed method, called "Turbulent Flame Propagation-AMR" (TFP-AMR), reproduces the transient dynamics of turbulent flames and vortical structures in the flow, and relies on the unstructured AMR library kalpaTARU. The method relies on criteria derived from the physical characteristics of deflagrations, minimising reliance on user-dependent parameters. In particular, a vortex selection criterion is derived from flame/vortex interaction theory. A specific mesh adaptation triggering criterion is also developed to ensure that regions of interest remain within a refined mesh zone throughout the transient propagation process.The methodology is validated on fundamental cases representative of the essential physical bricks of the problem, such as flame propagation, vortex propagation, and flame-vortex interaction. Finally, the method is applied to deflagration configurations. A semi-confined obstructed chamber is first considered, with extensive parametric variations regarding the chamber geometry and the initial mixture properties. A fully confined obstructed channel is then considered, where deflagration can reach high-speed regimes with shock waves forming ahead of the flame front. Comparisons between experimental and simulation results demonstrate that the TFP-AMR method achieves accurate results at a lower computational cost compared to static mesh reference simulations, while requiring minimal parameter adjustments. These application cases validate the method robustness and effectiveness for such applications
Caillol, Christian. „Influence de la composition du gaz naturel carburant sur la combustion turbulente en limite pauvre dans les moteurs à allumage commandé“. Aix-Marseille 1, 2003. http://www.theses.fr/2003AIX11042.
Der volle Inhalt der QuelleThe influence of the main minor components involved in natural gas composition, ethane and propane, is experimentally quantified. The constituted experimental database demonstrates the significant effect of fuel mixture properties on engine performance and pollutant emission levels. A one-zone predictive combustion model, based on the numerical resolution of energy and species conservation equations, which integrates detailed chemical kinetics, is developed. In order to take into account the effects of turbulence on the combustion process, a two-zone predictive thermodynamic approach is then adopted. The premixed flame propagation is first described by an empirical burning law, then by an expression for the rate of combustion of fuel controlled by the turbulent mixing process. Finally, a numerical modeling approach of nitric oxide formation, based on the use of a probability density function of temperature in burnt gases, is proposed
Mercier, Marc. „Contribution à l'étude du fonctionnement d'un moteur à allumage commandé alimenté au gaz naturel de Groningue“. Valenciennes, 2006. http://ged.univ-valenciennes.fr/nuxeo/site/esupversions/14577380-5929-49d9-bd99-fb1d1dc8381f.
Der volle Inhalt der QuelleWe studied the performance of a spark ignition engine fuelled with natural Groningen gas and compared the obtained results with those given when using gasoline. The analysis was made versus rotational speed, spark ignition timing and equivalence ratio with simultaneous measurements of cylinder head and exhaust temperatures. The cylinder pressure recording show the possibility of working with poor mixtures in the case of natural gas. The ignition delays and combustion durations are higher with gas and imply the necessity of an increased spark timing in comparison with gasoline to maximize the mean effective pressure. We calculated the combustion temperatures and the ignition delays and combustion durations were modelled versus equivalence ratio. The cylinder pressure cyclic dispersion showed that the combustion stability is optimum for spark timings and equivalence ratio corrsponding to maximum torques. With these conditions, the combustion durations are minimum with a fast front flame propagation and maximum mean effective pressure. Part loads influence the performance data by adjusting the admitted air flow in the admission pipe. The torque with gasoline remains high up to half load whereas the torque with natural gas decreases quickly below three quarter load. The polluant emissions are weakes with natural gas. Natural gas is an attractive alternative solution for engines fitted to this type of fuel
Brecq, Guillaume. „Contribution à la caractérisation thermodynamique du cliquetis dans les moteurs à gaz : application à de nouvelles méthodes de détection“. Nantes, 2002. http://www.theses.fr/2002NANT2064.
Der volle Inhalt der QuelleSorin, Anthony. „Étude de l'interaction solide - fluide dans la zone d'entrée d'un tube cylindrique support d'un écoulement d'air intermittent : application à l'étude thermique des collecteurs d'échappement de moteurs à explosion“. Nantes, 2003. http://www.theses.fr/2003NANT2069.
Der volle Inhalt der QuelleZadnik, Martin Vingerhoeds Rob A. Vincent François. „Détection du cliquetis pour moteur automobile“. Toulouse (Université Paul Sabatier, Toulouse 3), 2008. http://thesesups.ups-tlse.fr/206.
Der volle Inhalt der QuelleRoyer, Pascale. „Contribution de l'homogénéisation à l'étude de la filtration d'un gaz en milieu déformable à double porosité : application à l'étude du système gaz-charbon“. Université Joseph Fourier (Grenoble ; 1971-2015), 1994. http://www.theses.fr/1994GRE10186.
Der volle Inhalt der QuelleCorre, Christian. „Structure d'une flamme en deux stades de butane : action d'un additif antidétonant : la n-méthylaniline“. Lille 1, 1991. http://www.theses.fr/1991LIL10081.
Der volle Inhalt der QuelleKosiwczuk, Wenceslas. „Mesure simultanée des vitesses des gouttes et du gaz en mélange diphasique par PIV et fluorescence“. Rouen, 2006. http://www.theses.fr/2006ROUES065.
Der volle Inhalt der QuelleBücher zum Thema "Explosion de gaz"
Steel Construction Institute (Great Britain). Fire and Blast Information Group. Explosion mitigation systems. [Acton, Eng.]: Steel Construction Institute, 1994.
Den vollen Inhalt der Quelle findenInternational Colloquium on Dynamics of Explosions and Reactive Systems (12th 1989 Ann Arbor, Mich.). Dynamics of detonations and explosions--explosion phenomena. Washington, DC: American Institute of Aeronautics and Astronautics, 1991.
Den vollen Inhalt der Quelle findenBaker, W. E. Gas, dust, and hybrid explosions. Amsterdam: Elsevier, 1991.
Den vollen Inhalt der Quelle findenChen, Hongzhang. Gas Explosion Technology and Biomass Refinery. Dordrecht: Springer Netherlands, 2015. http://dx.doi.org/10.1007/978-94-017-7414-7.
Der volle Inhalt der QuelleInternational Colloquium on Dynamics of Explosions and Reactive Systems (10th 1985 Berkeley, Calif.). Dynamics of explosions. New York, NY: American Institute of Aeronautics and Astronautics, 1986.
Den vollen Inhalt der Quelle findenGelfand, Boris E., Mikhail V. Silnikov, Sergey P. Medvedev und Sergey V. Khomik. Thermo-Gas Dynamics of Hydrogen Combustion and Explosion. Berlin, Heidelberg: Springer Berlin Heidelberg, 2012. http://dx.doi.org/10.1007/978-3-642-25352-2.
Der volle Inhalt der QuelleV, Silnikov Mikhail, Medvedev Sergey P, Khomik Sergey V und SpringerLink (Online service), Hrsg. Thermo-Gas Dynamics of Hydrogen Combustion and Explosion. Berlin, Heidelberg: Springer Berlin Heidelberg, 2012.
Den vollen Inhalt der Quelle findenUnited States. Chemical Safety and Hazard Investigation Board, Hrsg. Explosion at ASCO: Dangers of flammable gas accumulation. [Washington, DC]: U.S. Chemical Safety and Hazard Investigation Board, 2006.
Den vollen Inhalt der Quelle findenLarsen, G. C. Gas explosion characterization, wave progagation (small-scale experiments). Luxembourg: Commission of the European Communities Directorate-General Information Market and Innovation, 1985.
Den vollen Inhalt der Quelle findenUnited States. Chemical Safety and Hazard Investigation Board., Hrsg. Explosion at ASCO: Dangers of flammable gas accumulation. [Washington, DC]: U.S. Chemical Safety and Hazard Investigation Board, 2006.
Den vollen Inhalt der Quelle findenBuchteile zum Thema "Explosion de gaz"
Chen, Hongzhang. „Gas Explosion Equipments“. In Gas Explosion Technology and Biomass Refinery, 87–143. Dordrecht: Springer Netherlands, 2015. http://dx.doi.org/10.1007/978-94-017-7414-7_3.
Der volle Inhalt der QuelleNasr, G. G., und N. E. Connor. „Fire and Explosion“. In Natural Gas Engineering and Safety Challenges, 281–308. Cham: Springer International Publishing, 2014. http://dx.doi.org/10.1007/978-3-319-08948-5_7.
Der volle Inhalt der QuelleSotoodeh, Karan. „Fire and Explosion“. In Safety Engineering in the Oil and Gas Industry, 173–238. Boca Raton: CRC Press, 2023. http://dx.doi.org/10.1201/9781003387275-6.
Der volle Inhalt der QuelleChen, Hongzhang. „Principle of Gas Explosion Technology“. In Gas Explosion Technology and Biomass Refinery, 27–86. Dordrecht: Springer Netherlands, 2015. http://dx.doi.org/10.1007/978-94-017-7414-7_2.
Der volle Inhalt der QuelleChen, Hongzhang. „Process Development of Gas Explosion“. In Gas Explosion Technology and Biomass Refinery, 145–95. Dordrecht: Springer Netherlands, 2015. http://dx.doi.org/10.1007/978-94-017-7414-7_4.
Der volle Inhalt der QuelleWang, Mingxiao. „Blast Injuries from Mining Gas“. In Explosive Blast Injuries, 559–78. Singapore: Springer Nature Singapore, 2023. http://dx.doi.org/10.1007/978-981-19-2856-7_35.
Der volle Inhalt der QuelleHall, S. F., D. Martin und J. MacKenzie. „Gas Cloud Explosions and their Effect on Nuclear Power Plant Basic Development of Explosion Codes“. In Safety of Thermal Water Reactors, 255–68. Dordrecht: Springer Netherlands, 1985. http://dx.doi.org/10.1007/978-94-009-4972-0_24.
Der volle Inhalt der QuelleMa, Guowei, Yimiao Huang und Jingde Li. „Risk Analysis Methods for Gas Explosion“. In Risk Analysis of Vapour Cloud Explosions for Oil and Gas Facilities, 153–72. Singapore: Springer Singapore, 2019. http://dx.doi.org/10.1007/978-981-13-7948-2_7.
Der volle Inhalt der QuelleChen, Hongzhang. „Gas Explosion Technique Principles and Biomass Refining Pandect“. In Gas Explosion Technology and Biomass Refinery, 1–25. Dordrecht: Springer Netherlands, 2015. http://dx.doi.org/10.1007/978-94-017-7414-7_1.
Der volle Inhalt der QuelleChen, Hongzhang. „Characterization and Research Methods of Gas-Exploded Materials“. In Gas Explosion Technology and Biomass Refinery, 197–226. Dordrecht: Springer Netherlands, 2015. http://dx.doi.org/10.1007/978-94-017-7414-7_5.
Der volle Inhalt der QuelleKonferenzberichte zum Thema "Explosion de gaz"
Kumar, Chenthil, Vishnu Rajendran, Anil Kumar und Amita Tripathi. „Study of Leakage and Explosion of Hydrogen and Blast Wall Failures in an Offshore Platform“. In 2017 25th International Conference on Nuclear Engineering. American Society of Mechanical Engineers, 2017. http://dx.doi.org/10.1115/icone25-67277.
Der volle Inhalt der QuelleVlasin, Nicolae-Ioan, Cristian Raul Cioara, Gheorghe Daniel Florea, Adrian Bogdan Simon-Marinica und Zoltan Vass. „VIRTUAL DESIGN OF STANDS FOR EXPERIMENTING WITH HYDROGEN EXPLOSIONS“. In 23rd SGEM International Multidisciplinary Scientific GeoConference 2023. STEF92 Technology, 2023. http://dx.doi.org/10.5593/sgem2023/4.1/s17.19.
Der volle Inhalt der QuelleLeishear, Robert A. „Fluid Transients Ignited the San Bruno Gas Pipeline Explosions“. In ASME 2023 Pressure Vessels & Piping Conference. American Society of Mechanical Engineers, 2023. http://dx.doi.org/10.1115/pvp2023-109226.
Der volle Inhalt der QuelleBakke, Jan Roar, und Per Erik Skogrand. „Explosion Relief Panels and Their Effect on Gas Explosion Overpressure“. In ASME 2004 23rd International Conference on Offshore Mechanics and Arctic Engineering. ASMEDC, 2004. http://dx.doi.org/10.1115/omae2004-51005.
Der volle Inhalt der QuelleProdan, Maria, Andrei Szollosi-Mota, Irina Nalboc, Sonia Suvar und Emilian Ghicioi. „EXPLOSION LIMITS EXPERIMENTAL DETERMINATION FOR GASOLINE, DIESEL FUEL AND ACETONE VAPORS“. In 23rd SGEM International Multidisciplinary Scientific GeoConference 2023. STEF92 Technology, 2023. http://dx.doi.org/10.5593/sgem2023/1.1/s03.40.
Der volle Inhalt der QuelleHelegda, Matous, Iris Helegda, Jan Skrinsky, Katerina Kubricka und Jiri Pokorny. „NEW ASPECTS OF EXPLOSIVE CHARACTERISTICS OF HYBRID MIXTURES OF DUST/GAS DISPERSIONS“. In 23rd SGEM International Multidisciplinary Scientific GeoConference 2023. STEF92 Technology, 2023. http://dx.doi.org/10.5593/sgem2023v/4.2/s17.55.
Der volle Inhalt der QuelleGolub, Eugene, Joshua Greenfeld, Robert Dresnack, F. H. Griffis und Louis Pignataro. „Safe Separation Distances: Natural Gas Transmission Pipeline Incidents“. In 1998 2nd International Pipeline Conference. American Society of Mechanical Engineers, 1998. http://dx.doi.org/10.1115/ipc1998-2004.
Der volle Inhalt der QuelleVinnem, Jan Erik. „Perspective on Gas Explosions Risk Offshore; Low historic Gas Explosion Frequencies revealed in North Sea“. In SPE International Conference on Health, Safety and Environment in Oil and Gas Exploration and Production. Society of Petroleum Engineers, 2000. http://dx.doi.org/10.2118/61501-ms.
Der volle Inhalt der QuelleWilliams, Daniel N., und Luc Bauwens. „Detonation Arrestors: Evaluating Explosions due to Self-Reignition“. In 1996 1st International Pipeline Conference. American Society of Mechanical Engineers, 1996. http://dx.doi.org/10.1115/ipc1996-1885.
Der volle Inhalt der QuelleGoldfarb, Igor, Vladimir Goldshtein, Grigory Kuzmenko und J. Barry Greenberg. „Monodisperse Spray Effects on Thermal Explosion in a Gas“. In ASME 1997 International Mechanical Engineering Congress and Exposition. American Society of Mechanical Engineers, 1997. http://dx.doi.org/10.1115/imece1997-0882.
Der volle Inhalt der QuelleBerichte der Organisationen zum Thema "Explosion de gaz"
Bjerketvedt, D., und E. Nornes. Numerical simulation of hypothetical gas explosions in a process unit: Effect of vapor barriers on explosion pressure. Office of Scientific and Technical Information (OSTI), Juli 1989. http://dx.doi.org/10.2172/6890117.
Der volle Inhalt der QuelleEsparza und Westine. L51482 Well Casing Response to Buried Explosive Detonations. Chantilly, Virginia: Pipeline Research Council International, Inc. (PRCI), Juli 1985. http://dx.doi.org/10.55274/r0010272.
Der volle Inhalt der QuelleCruse, Helen, Timothy Yates und Muhammad Yazdani. Review of progress of the Iron Mains Risk Reduction Programme (IMRRP) 2013 to 2023. HSE, Oktober 2024. http://dx.doi.org/10.69730/hse.24rr1216.
Der volle Inhalt der QuelleMcKinnon, Mark, Sean DeCrane und Steve Kerber. Four Firefighters Injured in Lithium-Ion Battery Energy Storage System Explosion -- Arizona. UL Firefighter Safety Research Institute, Juli 2020. http://dx.doi.org/10.54206/102376/tehs4612.
Der volle Inhalt der QuellePACE, M. E. LIQUID PROPANE GAS (LPG) STORAGE AREA BOILING LIQUID EXPANDING VAPOR EXPLOSION (BLEVE) ANALYSIS. Office of Scientific and Technical Information (OSTI), Januar 2004. http://dx.doi.org/10.2172/820866.
Der volle Inhalt der QuelleOswald und Smith. L52260 Gap Study and Recommendation - Pipe Response to Buried Explosive Detonations. Chantilly, Virginia: Pipeline Research Council International, Inc. (PRCI), Mai 2005. http://dx.doi.org/10.55274/r0010252.
Der volle Inhalt der QuelleBarowy, Adam, Alex Klieger, Jack Regan und Mark McKinnon. UL 9540A Installation Level Tests with Outdoor Lithium-ion Energy Storage System Mockups. UL Firefighter Safety Research Institute, April 2021. http://dx.doi.org/10.54206/102376/jemy9731.
Der volle Inhalt der QuelleLefrancois, A., R. Lee und C. Tarver. Shock Desensitization Effect in the STANAG 4363 Confined Explosive Component Water Gap Test. Office of Scientific and Technical Information (OSTI), Juni 2006. http://dx.doi.org/10.2172/896294.
Der volle Inhalt der QuelleSalama, Hana, und Emma Bjertén-Günther. Women Managing Weapons: Perspectives for Increasing Women’s Participation in Weapons and Ammunition Management. United Nations Institute for Disarmament Research, Juli 2021. http://dx.doi.org/10.37559/gen/2021/02.
Der volle Inhalt der QuelleYang, J. An Improved Analytical Approach to Determine the Explosive Effects of Flammable Gas-Air Mixtures. Office of Scientific and Technical Information (OSTI), November 2005. http://dx.doi.org/10.2172/888583.
Der volle Inhalt der Quelle