Inhaltsverzeichnis
Auswahl der wissenschaftlichen Literatur zum Thema „Exploratory landscape analysis“
Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an
Machen Sie sich mit den Listen der aktuellen Artikel, Bücher, Dissertationen, Berichten und anderer wissenschaftlichen Quellen zum Thema "Exploratory landscape analysis" bekannt.
Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.
Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.
Zeitschriftenartikel zum Thema "Exploratory landscape analysis"
Rosetia, Amanda, und Nor Zalina Harun. „An Exploratory Analysis of the Definition and Conceptualization of Cultural Landscape“. Jurnal Kejuruteraan si6, Nr. 1 (31.10.2023): 17–27. http://dx.doi.org/10.17576/jkukm-2023-si6(1)-02.
Der volle Inhalt der QuelleLang, Ryan Dieter, und Andries Petrus Engelbrecht. „An Exploratory Landscape Analysis-Based Benchmark Suite“. Algorithms 14, Nr. 3 (27.02.2021): 78. http://dx.doi.org/10.3390/a14030078.
Der volle Inhalt der QuelleChang Chien, Yi-Min, Steve Carver und Alexis Comber. „An Exploratory Analysis of Expert and Nonexpert-Based Land-Scape Aesthetics Evaluations: A Case Study from Wales“. Land 10, Nr. 2 (13.02.2021): 192. http://dx.doi.org/10.3390/land10020192.
Der volle Inhalt der QuelleStaniak, Mateusz, und Przemysław Biecek. „The Landscape of R Packages for Automated Exploratory Data Analysis“. R Journal 11, Nr. 2 (2019): 347. http://dx.doi.org/10.32614/rj-2019-033.
Der volle Inhalt der QuelleSarefo, Seth, Maurice Dawson und Mphago Banyatsang. „An exploratory analysis of the cybersecurity threat landscape for Botswana“. Procedia Computer Science 219 (2023): 1012–22. http://dx.doi.org/10.1016/j.procs.2023.01.379.
Der volle Inhalt der QuelleSong, Shangzhou, Shaohua Wang, Huichun Ye und Yong Guan. „Exploratory Analysis on the Spatial Distribution and Influencing Factors of Beitang Landscape in the Shangzhuang Basin“. Land 11, Nr. 3 (12.03.2022): 418. http://dx.doi.org/10.3390/land11030418.
Der volle Inhalt der QuelleMunoz, Mario A., Michael Kirley und Saman K. Halgamuge. „Exploratory Landscape Analysis of Continuous Space Optimization Problems Using Information Content“. IEEE Transactions on Evolutionary Computation 19, Nr. 1 (Februar 2015): 74–87. http://dx.doi.org/10.1109/tevc.2014.2302006.
Der volle Inhalt der QuelleAlyahya, Khulood, und Jonathan E. Rowe. „Landscape Analysis of a Class of NP-Hard Binary Packing Problems“. Evolutionary Computation 27, Nr. 1 (März 2019): 47–73. http://dx.doi.org/10.1162/evco_a_00237.
Der volle Inhalt der QuelleJudijanto, Loso, Eva Yuniarti Utami, Rianti Setyawasih und Teddy Oswari. „Exploratory Analysis of Literature on the Impact of Globalization on Finance“. West Science Interdisciplinary Studies 1, Nr. 12 (30.12.2023): 1451–60. http://dx.doi.org/10.58812/wsis.v1i12.525.
Der volle Inhalt der QuelleCaldeira, Sofia P. „The Pluralization of Feminist Hashtag Landscapes: An Exploratory Mapping of Feminist Hashtags on Portuguese Instagram“. Social Media + Society 9, Nr. 2 (April 2023): 205630512311716. http://dx.doi.org/10.1177/20563051231171638.
Der volle Inhalt der QuelleDissertationen zum Thema "Exploratory landscape analysis"
Jankovic, Anja. „Towards Online Landscape-Aware Algorithm Selection in Numerical Black-Box Optimization“. Electronic Thesis or Diss., Sorbonne université, 2021. http://www.theses.fr/2021SORUS302.
Der volle Inhalt der QuelleBlack-box optimization algorithms (BBOAs) are conceived for settings in which exact problem formulations are non-existent, inaccessible, or too complex for an analytical solution. BBOAs are essentially the only means of finding a good solution to such problems. Due to their general applicability, BBOAs can exhibit different behaviors when optimizing different types of problems. This yields a meta-optimization problem of choosing the best suited algorithm for a particular problem, called the algorithm selection (AS) problem. By reason of inherent human bias and limited expert knowledge, the vision of automating the selection process has quickly gained traction in the community. One prominent way of doing so is via so-called landscape-aware AS, where the choice of the algorithm is based on predicting its performance by means of numerical problem instance representations called features. A key challenge that landscape-aware AS faces is the computational overhead of extracting the features, a step typically designed to precede the actual optimization. In this thesis, we propose a novel trajectory-based landscape-aware AS approach which incorporates the feature extraction step within the optimization process. We show that the features computed using the search trajectory samples lead to robust and reliable predictions of algorithm performance, and to powerful algorithm selection models built atop. We also present several preparatory analyses, including a novel perspective of combining two complementary regression strategies that outperforms any of the classical, single regression models, to amplify the quality of the final selector
McBride, Gemma. „An exploratory analysis of landscape-level effects on wild dog home ranges and core areas : a case study at Kosciuszko National Park, and Bago and Maragle State Forest“. Master's thesis, 2007. http://hdl.handle.net/1885/132120.
Der volle Inhalt der QuelleBücher zum Thema "Exploratory landscape analysis"
Jenset, Gard B., und Barbara McGillivray. A new methodology for quantitative historical linguistics. Oxford University Press, 2017. http://dx.doi.org/10.1093/oso/9780198718178.003.0007.
Der volle Inhalt der QuelleBuchteile zum Thema "Exploratory landscape analysis"
Beham, Andreas, Erik Pitzer, Stefan Wagner und Michael Affenzeller. „Integrating Exploratory Landscape Analysis into Metaheuristic Algorithms“. In Computer Aided Systems Theory – EUROCAST 2017, 473–80. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-74718-7_57.
Der volle Inhalt der QuelleMersmann, Olaf, Mike Preuss und Heike Trautmann. „Benchmarking Evolutionary Algorithms: Towards Exploratory Landscape Analysis“. In Parallel Problem Solving from Nature, PPSN XI, 73–82. Berlin, Heidelberg: Springer Berlin Heidelberg, 2010. http://dx.doi.org/10.1007/978-3-642-15844-5_8.
Der volle Inhalt der QuelleKerschke, Pascal, Mike Preuss, Carlos Hernández, Oliver Schütze, Jian-Qiao Sun, Christian Grimme, Günter Rudolph, Bernd Bischl und Heike Trautmann. „Cell Mapping Techniques for Exploratory Landscape Analysis“. In Advances in Intelligent Systems and Computing, 115–31. Cham: Springer International Publishing, 2014. http://dx.doi.org/10.1007/978-3-319-07494-8_9.
Der volle Inhalt der QuellePienaar, Johannes J., Anna S. Boman und Katherine M. Malan. „Hilbert Curves for Efficient Exploratory Landscape Analysis Neighbourhood Sampling“. In Applications of Evolutionary Computation, 293–309. Cham: Springer Nature Switzerland, 2024. http://dx.doi.org/10.1007/978-3-031-56855-8_18.
Der volle Inhalt der QuelleRenau, Quentin, Carola Doerr, Johann Dreo und Benjamin Doerr. „Exploratory Landscape Analysis is Strongly Sensitive to the Sampling Strategy“. In Parallel Problem Solving from Nature – PPSN XVI, 139–53. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-58115-2_10.
Der volle Inhalt der QuelleSchneider, Lennart, Lennart Schäpermeier, Raphael Patrick Prager, Bernd Bischl, Heike Trautmann und Pascal Kerschke. „HPO $$\times $$ ELA: Investigating Hyperparameter Optimization Landscapes by Means of Exploratory Landscape Analysis“. In Lecture Notes in Computer Science, 575–89. Cham: Springer International Publishing, 2022. http://dx.doi.org/10.1007/978-3-031-14714-2_40.
Der volle Inhalt der QuellePrager, Raphael Patrick, und Heike Trautmann. „Nullifying the Inherent Bias of Non-invariant Exploratory Landscape Analysis Features“. In Applications of Evolutionary Computation, 411–25. Cham: Springer Nature Switzerland, 2023. http://dx.doi.org/10.1007/978-3-031-30229-9_27.
Der volle Inhalt der QuelleRenau, Quentin, Johann Dreo, Carola Doerr und Benjamin Doerr. „Towards Explainable Exploratory Landscape Analysis: Extreme Feature Selection for Classifying BBOB Functions“. In Applications of Evolutionary Computation, 17–33. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-72699-7_2.
Der volle Inhalt der QuelleFärber, Michael, David Lamprecht, Johan Krause, Linn Aung und Peter Haase. „SemOpenAlex: The Scientific Landscape in 26 Billion RDF Triples“. In The Semantic Web – ISWC 2023, 94–112. Cham: Springer Nature Switzerland, 2023. http://dx.doi.org/10.1007/978-3-031-47243-5_6.
Der volle Inhalt der QuelleWinter, Bodo. „Mapping the landscape of exploratory and confirmatory data analysis in linguistics“. In Data Analytics in Cognitive Linguistics, 13–48. De Gruyter, 2022. http://dx.doi.org/10.1515/9783110687279-002.
Der volle Inhalt der QuelleKonferenzberichte zum Thema "Exploratory landscape analysis"
Mersmann, Olaf, Bernd Bischl, Heike Trautmann, Mike Preuss, Claus Weihs und Günter Rudolph. „Exploratory landscape analysis“. In the 13th annual conference. New York, New York, USA: ACM Press, 2011. http://dx.doi.org/10.1145/2001576.2001690.
Der volle Inhalt der QuelleKerschke, Pascal, und Mike Preuss. „Exploratory landscape analysis“. In GECCO '19: Genetic and Evolutionary Computation Conference. New York, NY, USA: ACM, 2019. http://dx.doi.org/10.1145/3319619.3323389.
Der volle Inhalt der QuelleKerschke, Pascal, und Mike Preuss. „Exploratory landscape analysis“. In GECCO '17: Genetic and Evolutionary Computation Conference. New York, NY, USA: ACM, 2017. http://dx.doi.org/10.1145/3067695.3067696.
Der volle Inhalt der QuelleKerschke, Pascal, und Mike Preuss. „Exploratory Landscape Analysis“. In GECCO '23 Companion: Companion Conference on Genetic and Evolutionary Computation. New York, NY, USA: ACM, 2023. http://dx.doi.org/10.1145/3583133.3595058.
Der volle Inhalt der QuellePikalov, Maxim, und Aleksei Pismerov. „Exploratory Landscape Analysis Based Parameter Control“. In GECCO '23 Companion: Companion Conference on Genetic and Evolutionary Computation. New York, NY, USA: ACM, 2023. http://dx.doi.org/10.1145/3583133.3596364.
Der volle Inhalt der QuelleHe, Yaodong, Shiu Yin Yuen und Yang Lou. „Exploratory landscape analysis using algorithm based sampling“. In GECCO '18: Genetic and Evolutionary Computation Conference. New York, NY, USA: ACM, 2018. http://dx.doi.org/10.1145/3205651.3205660.
Der volle Inhalt der QuelleTanabe, Ryoji. „Towards exploratory landscape analysis for large-scale optimization“. In GECCO '21: Genetic and Evolutionary Computation Conference. New York, NY, USA: ACM, 2021. http://dx.doi.org/10.1145/3449639.3459300.
Der volle Inhalt der QuelleKerschke, Pascal, Mike Preuss, Simon Wessing und Heike Trautmann. „Detecting Funnel Structures by Means of Exploratory Landscape Analysis“. In GECCO '15: Genetic and Evolutionary Computation Conference. New York, NY, USA: ACM, 2015. http://dx.doi.org/10.1145/2739480.2754642.
Der volle Inhalt der QuelleŠkvorc, Urban, Tome Eftimov und Peter Korošec. „Using exploratory landscape analysis to visualize single-objective problems“. In GECCO '20: Genetic and Evolutionary Computation Conference. New York, NY, USA: ACM, 2020. http://dx.doi.org/10.1145/3377929.3397488.
Der volle Inhalt der QuelleKerschke, Pascal, Mike Preuss, Simon Wessing und Heike Trautmann. „Low-Budget Exploratory Landscape Analysis on Multiple Peaks Models“. In GECCO '16: Genetic and Evolutionary Computation Conference. New York, NY, USA: ACM, 2016. http://dx.doi.org/10.1145/2908812.2908845.
Der volle Inhalt der QuelleBerichte der Organisationen zum Thema "Exploratory landscape analysis"
Wainaina, Priscilla, Eunice Gituku und Peter Minang. An Exploratory Study of Cost-Benefit Analysis of Landscape Restoration. World Agroforestry Centre (ICRAF), 2020. http://dx.doi.org/10.5716/wp20014.pdf.
Der volle Inhalt der Quelle