Inhaltsverzeichnis
Auswahl der wissenschaftlichen Literatur zum Thema „Expanding turbulent flames“
Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an
Machen Sie sich mit den Listen der aktuellen Artikel, Bücher, Dissertationen, Berichten und anderer wissenschaftlichen Quellen zum Thema "Expanding turbulent flames" bekannt.
Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.
Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.
Zeitschriftenartikel zum Thema "Expanding turbulent flames"
Yang, Sheng, Abhishek Saha, Zirui Liu und Chung K. Law. „Role of Darrieus–Landau instability in propagation of expanding turbulent flames“. Journal of Fluid Mechanics 850 (10.07.2018): 784–802. http://dx.doi.org/10.1017/jfm.2018.426.
Der volle Inhalt der QuelleZhao, Haoran, Chunmiao Yuan, Gang Li und Fuchao Tian. „The Propagation Characteristics of Turbulent Expanding Flames of Methane/Hydrogen Blending Gas“. Energies 17, Nr. 23 (28.11.2024): 5997. http://dx.doi.org/10.3390/en17235997.
Der volle Inhalt der QuelleSaha, Abhishek, Swetaprovo Chaudhuri und Chung K. Law. „Flame surface statistics of constant-pressure turbulent expanding premixed flames“. Physics of Fluids 26, Nr. 4 (April 2014): 045109. http://dx.doi.org/10.1063/1.4871021.
Der volle Inhalt der QuelleAhmed, I., und N. Swaminathan. „Simulation of Spherically Expanding Turbulent Premixed Flames“. Combustion Science and Technology 185, Nr. 10 (03.10.2013): 1509–40. http://dx.doi.org/10.1080/00102202.2013.808629.
Der volle Inhalt der QuelleFries, Dan, Bradley A. Ochs, Abhishek Saha, Devesh Ranjan und Suresh Menon. „Flame speed characteristics of turbulent expanding flames in a rectangular channel“. Combustion and Flame 199 (Januar 2019): 1–13. http://dx.doi.org/10.1016/j.combustflame.2018.10.008.
Der volle Inhalt der QuelleUnni, Vishnu R., Chung K. Law und Abhishek Saha. „A cellular automata model for expanding turbulent flames“. Chaos: An Interdisciplinary Journal of Nonlinear Science 30, Nr. 11 (November 2020): 113141. http://dx.doi.org/10.1063/5.0018947.
Der volle Inhalt der QuelleLIPATNIKOV, A. N., und J. CHOMIAK. „Transient and Geometrical Effects in Expanding Turbulent Flames“. Combustion Science and Technology 154, Nr. 1 (Mai 2000): 75–117. http://dx.doi.org/10.1080/00102200008947273.
Der volle Inhalt der QuelleZhao, Haoran, Jinhua Wang, Xiao Cai, Hongchao Dai, Zhijian Bian und Zuohua Huang. „Flame structure, turbulent burning velocity and its unified scaling for lean syngas/air turbulent expanding flames“. International Journal of Hydrogen Energy 46, Nr. 50 (Juli 2021): 25699–711. http://dx.doi.org/10.1016/j.ijhydene.2021.05.090.
Der volle Inhalt der QuelleLiu, Zirui, Sheng Yang, Chung K. Law und Abhishek Saha. „Cellular instability in Le < 1 turbulent expanding flames“. Proceedings of the Combustion Institute 37, Nr. 2 (2019): 2611–18. http://dx.doi.org/10.1016/j.proci.2018.07.056.
Der volle Inhalt der QuelleMukundakumar, Nithin, und Rob Bastiaans. „DNS Study of Spherically Expanding Premixed Turbulent Ammonia-Hydrogen Flame Kernels, Effect of Equivalence Ratio and Hydrogen Content“. Energies 15, Nr. 13 (28.06.2022): 4749. http://dx.doi.org/10.3390/en15134749.
Der volle Inhalt der QuelleDissertationen zum Thema "Expanding turbulent flames"
Villenave, Nicolas. „Étude expérimentale des propriétés fondamentales de la combustion de l'hydrogène pour des applications de propulsion“. Electronic Thesis or Diss., Orléans, 2025. http://www.theses.fr/2025ORLE1001.
Der volle Inhalt der QuelleIn order to reach carbon neutrality by 2050, the European Union is considering hydrogen as a promising energy carrier to reduce reliance on fossil fuels. While fuel cells and electric vehicles already play an important role in decarbonizing the transport sector, hydrogen is also seen as an alternative to conventional fuels for heavy-duty vehicles. Yet, a number of challenges linked to the physico-chemical properties of lean hydrogen combustion are still under investigation: abnormal combustion phenomena, production of nitrogen oxides,instabilities due to thermodiffusive effects, to state a few. This thesis contributes to the understanding of the auto-ignition process in lean hydrogen/air mixtures, as well as the propagation of laminar and turbulent premixed flames. First, measurements of hydrogen/air and hydrogen/air/nitrogen oxides ignition delay times are carried out using a rapid compression machine, to update and validate a kinetic mechanism under spark ignition engine-like conditions. Second, outwardly propagating spherical premixed laminar flames were studiedin a constant-volume combustion chamber, varying the initial temperature and steam dilution, and considering the intrinsic instabilities linked to the physico-chemical properties of hydrogen namely thermodiffusive,hydrodynamic and gravity-related instabilities. Then, expanding premixed turbulent flames are characterized by the generation of a homogeneous and isotropic turbulence zone within a spherical chamber. A parametric study is conducted by varying turbulent intensity, initial pressure and equivalence ratio. Finally, a turbulent correlation is proposed to describe the turbulent propagation of such flames, for use in numerical models
Galmiche, Bénédicte. „Caractérisation expérimentale des flammes laminaires et turbulentes en expansion“. Phd thesis, Université d'Orléans, 2014. http://tel.archives-ouvertes.fr/tel-01069403.
Der volle Inhalt der QuelleLarabi, Hakim. „Vers la modélisation multi-composants des flammes de spray Formalism for spatially averaged consumption speed considering spherically expanding flame configuration“. Thesis, Normandie, 2019. http://www.theses.fr/2019NORMIR20.
Der volle Inhalt der QuelleUntil recently, automotive and aeronautical engines were designed to operate with fossil fuels. To better meet the economic and environmental challenges of the modern world and of the energy transition, alternative fuels are developed and tested. They are used to replaceconventional fuels or as a blend to achieve the desired thermo-chemical properties. However, the impact of these new fuels on the performance of combustion chambers remains partially known. From this perspective, high-fidelity simulations of turbulent combustion of alternative fuels can be reached only if a detailed multi-component description of the liquid and gas mixtures is considered. The objective of this thesis is to contribute to the unsteady modeling of spray flames where complex multi-component phenomena occur : differential evaporation, multi-species mixing, gas phase chemical reactions. To this aim, the fuel is treated as a set of multi-component mixtures, which may be different in the liquid and gas phases depending on the required accuracy. Different models for the aforementioned phenomena are available in the literature, and the main challenge is the coupling of these different approaches and their validation in realistic and complex conditions. First, the chosen multi-component approach for the gas phase, based on the transport of a large number of species and on finite-rate chemistry, is validated for premixed flames. The expanding spherical flame configuration was chosen to study the flame consumption speed, which is an important parameter in combustion. In collaboration with the experimental team at the CORIA laboratory, a flame consumption speed formalism is established for non-confined and confined spherical expanding flames. This formalism enables to have a precise comparison of experimental and numerical results for methane/air and iso-octane/air flames and to validate the gas phase models. Second, we focused on the physical process of evaporation. The multi-component evaporation model of Abramzon-Sirignano is implemented in the YALES2 flow solver based on a point-particle approach for the fuel droplets. This model is adapted to enable the description of single- or multi-component evaporation with or without differential evaporation. As such, the model is capable of dealing with various fuel surrogates. The evaporation model is compared to the Spalding model and validated on experimental results of Chauveau et al. [33], Nomura et al. [158], Ghassemi et al. [82] and Daïf et al. [47] for a single component droplet and then two-component isolated droplet with and without convection. Finally, the 3D Large-Eddy Simulation (LES) of a complex n-heptane/air spray flame is conducted with analytical reduced chemistry (ARC, [169, 205]). This flame was experimentally studied at the CORIA laboratory with high fidelity diagnostics to characterize the flame structure and provide quantitative data such as gas-phase velocity and temperature as well as local droplet size and velocity distributions. Comparison with the experimental data [225] and with the simulations carried out within the framework of the 6th Workshop on Turbulent Combustion of Spray, shows that the current LES accurately reproduce the gas flow and properties of the dispersed phase. This configuration paves the way for the simulation of even more complex spray flames with multi-component fuels
Albin, Eric. „Contribution à la modélisation numérique des flammes turbulentes : comparaison DNS-EEM-Expériences“. Phd thesis, INSA de Rouen, 2010. http://tel.archives-ouvertes.fr/tel-00557908.
Der volle Inhalt der QuelleMannaa, Ossama. „Burning Characteristics of Premixed Flames in Laminar and Turbulent Environments“. Diss., 2018. http://hdl.handle.net/10754/630077.
Der volle Inhalt der QuelleChen, Li-long, und 陳立龍. „Self-similarity and flame speeds of premixed turbulent spherical expanding flames under elevated pressures at different Lewis numbers (Le < 1, Le ≈ 1, Le > 1)“. Thesis, 2014. http://ndltd.ncl.edu.tw/handle/13121964456741593170.
Der volle Inhalt der Quelle國立中央大學
能源工程研究所
102
This thesis measures quantitatively the turbulent flame speed of premixed flames over an initial pressure range of p = 1 ~ 5 atm. The main objective is to investigate the effect of the thermodiffusive instability on the self-similar propagation of expanding spherical premixed flames. Such a self-similar propagation phenomenon was first found by Chaudhri et al. (2012). In it they measured the turbulent flame speed (d
Buchteile zum Thema "Expanding turbulent flames"
Giannakopoulos, G. K., C. E. Frouzakis, M. Matalon und A. G. Tomboulides. „The Turbulent Flame Speed of Premixed Spherically Expanding Flames“. In Direct and Large-Eddy Simulation X, 415–21. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-63212-4_53.
Der volle Inhalt der QuelleKonferenzberichte zum Thema "Expanding turbulent flames"
Lipatnikov, Andrei N., und Jerzy Chomiak. „Modeling of Turbulent Scalar Transport in Expanding Spherical Flames“. In 2005 SAE Brasil Fuels & Lubricants Meeting. 400 Commonwealth Drive, Warrendale, PA, United States: SAE International, 2005. http://dx.doi.org/10.4271/2005-01-2109.
Der volle Inhalt der QuelleMuppala, Siva P. R., und Miltiadis V. Papalexandris. „A Modeling Approach for Hydrogen-Doped Lean Premixed Turbulent Combustion“. In ASME 2006 International Mechanical Engineering Congress and Exposition. ASMEDC, 2006. http://dx.doi.org/10.1115/imece2006-13861.
Der volle Inhalt der QuelleSathiah, Pratap, und Andrei N. Lipatnikov. „Numerical Modeling of Stationary But Developing Premixed Turbulent Flames“. In ASME Turbo Expo 2006: Power for Land, Sea, and Air. ASMEDC, 2006. http://dx.doi.org/10.1115/gt2006-90916.
Der volle Inhalt der QuelleOzel Erol, G., J. Hasslberger, M. Klein und N. Chakraborty. „Spherically expanding turbulent flames in fuel-droplet mists: A Direct Numerical Simulation analysis“. In THMT-18. Turbulence Heat and Mass Transfer 9 Proceedings of the Ninth International Symposium On Turbulence Heat and Mass Transfer. Connecticut: Begellhouse, 2018. http://dx.doi.org/10.1615/thmt-18.270.
Der volle Inhalt der QuelleBaust, Tobias, Peter Habisreuther und Nikolaos Zarzalis. „Determination of Laminar Flame Speed and Markstein Numbers Deduced From Turbulent Flames Using the Bomb Method“. In ASME Turbo Expo 2016: Turbomachinery Technical Conference and Exposition. American Society of Mechanical Engineers, 2016. http://dx.doi.org/10.1115/gt2016-57305.
Der volle Inhalt der QuelleKutkan, Halit, Alberto Amato, Giovanni Campa, Giulio Ghirardo, Luis Tay Wo Chong und Eirik Æsøy. „Modelling of Turbulent Premixed CH4/H2/Air Flames Including the Influence of Stretch and Heat Losses“. In ASME Turbo Expo 2021: Turbomachinery Technical Conference and Exposition. American Society of Mechanical Engineers, 2021. http://dx.doi.org/10.1115/gt2021-59063.
Der volle Inhalt der QuelleParajuli, Pradeep, Tyler Paschal, Mattias A. Turner, Eric L. Petersen und Waruna D. Kulatilaka. „High-Speed Spectrally Resolved Imaging Studies of Spherically Expanding Natural Gas Flames Under Gas Turbine Operating Conditions“. In ASME Turbo Expo 2019: Turbomachinery Technical Conference and Exposition. American Society of Mechanical Engineers, 2019. http://dx.doi.org/10.1115/gt2019-91752.
Der volle Inhalt der QuelleIshino, Yojiro, Naoki Hayashi, Yuta Ishiko, Ahmad Zaid Nazari, Kimihiro Nagase, Kazuma Kakimoto und Yu Saiki. „Schlieren 3D-CT Reconstruction of Instantaneous Density Distributions of Spark-Ignited Flame Kernels of Fuel-Rich Propane-Air Premixture“. In ASME 2016 Heat Transfer Summer Conference collocated with the ASME 2016 Fluids Engineering Division Summer Meeting and the ASME 2016 14th International Conference on Nanochannels, Microchannels, and Minichannels. American Society of Mechanical Engineers, 2016. http://dx.doi.org/10.1115/ht2016-7423.
Der volle Inhalt der QuelleMorones, Anibal, Mattias A. Turner, Victor León, Kyle Ruehle und Eric L. Petersen. „Validation of a New Turbulent Flame Speed Facility for the Study of Gas Turbine Fuel Blends at Elevated Pressure“. In ASME Turbo Expo 2019: Turbomachinery Technical Conference and Exposition. American Society of Mechanical Engineers, 2019. http://dx.doi.org/10.1115/gt2019-90394.
Der volle Inhalt der QuelleRavi, S., A. Morones, E. L. Petersen und F. Güthe. „Effects of Hydrogen Addition on the Flame Speeds of Natural Gas Blends Under Uniform Turbulent Conditions“. In ASME Turbo Expo 2015: Turbine Technical Conference and Exposition. American Society of Mechanical Engineers, 2015. http://dx.doi.org/10.1115/gt2015-42903.
Der volle Inhalt der Quelle