Inhaltsverzeichnis
Auswahl der wissenschaftlichen Literatur zum Thema „Exhaust gas cleaning“
Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an
Machen Sie sich mit den Listen der aktuellen Artikel, Bücher, Dissertationen, Berichten und anderer wissenschaftlichen Quellen zum Thema "Exhaust gas cleaning" bekannt.
Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.
Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.
Zeitschriftenartikel zum Thema "Exhaust gas cleaning"
Meyer, Sven, Otto Carlowitz, Matthias Napp und Sven Gutperl. „Adsorptive smoothers for exhaust gas cleaning“. Adsorption 23, Nr. 2-3 (06.10.2016): 211–16. http://dx.doi.org/10.1007/s10450-016-9822-9.
Der volle Inhalt der QuelleLevitskii, Yu N., und A. L. Breitbarg. „Wet-type exhaust gas cleaning apparatus“. Chemical and Petroleum Engineering 27, Nr. 3 (März 1991): 165–68. http://dx.doi.org/10.1007/bf01150090.
Der volle Inhalt der QuelleHIROSE, Yuta, Hiroyuki KITAHARA und Yukihiko Matsumura. „Cleaning of exhaust gas from pellet stove“. Proceedings of Conference of Chugoku-Shikoku Branch 2020.58 (2020): 07c1. http://dx.doi.org/10.1299/jsmecs.2020.58.07c1.
Der volle Inhalt der QuelleKadyrov, A. S., A. A. Ganyukov, B. K. Sarsembekov, Zh Zh Zhunusbekova und K. A. Sinelnikov. „Investigation of the process of ultrasonic cleaning of exhaust gases from an internal combustion engine“. BULLETIN of L.N. Gumilyov Eurasian National University. Technical Science and Technology Series 137, Nr. 4 (2021): 18–28. http://dx.doi.org/10.32523/2616-7263-2021-137-4-18-28.
Der volle Inhalt der QuelleDOROKHOV, ALEKSEI S. „EXHAUST GAS HEAT UTILIZATION IN SEPARATING WORKING UNITS OF ROOT CROP AND POTATO HARVESTERS“. Agricultural engineering, Nr. 2 (2022): 4–7. http://dx.doi.org/10.26897/2687-1149-2022-2-4-7.
Der volle Inhalt der QuelleDOROKHOV, ALEKSEI S. „EXHAUST GAS HEAT UTILIZATION IN SEPARATING WORKING UNITS OF ROOT CROP AND POTATO HARVESTERS“. Agricultural engineering, Nr. 2 (2022): 4–7. http://dx.doi.org/10.26897/2687-1149-2022-2-4-7.
Der volle Inhalt der QuelleYefimov, Olexander, Valerii Kavertsev und Oleksandr Zhidetskyi. „Modern Solutions for the Reconstruction of Gas Exhaust Ducts of Converters Operating in Ukraine“. NTU "KhPI" Bulletin: Power and heat engineering processes and equipment, Nr. 1 (28.10.2021): 25–28. http://dx.doi.org/10.20998/2078-774x.2021.01.04.
Der volle Inhalt der QuelleNitskaya, Svetlana G., K. R. Smolyakova und Irina V. Shmidt. „Optimizing the Performance of Electroplating Gas-Cleaning Equipment“. Solid State Phenomena 299 (Januar 2020): 792–97. http://dx.doi.org/10.4028/www.scientific.net/ssp.299.792.
Der volle Inhalt der QuelleCzajkowska, Aleksandra. „Installations for cleaning exhaust fumes from dust–gas pollutants“. Environmental Protection and Natural Resources 29, Nr. 4 (01.12.2018): 26–32. http://dx.doi.org/10.2478/oszn-2018-0019.
Der volle Inhalt der QuelleInui, Takashi, Masaya Tabaru, Yukio Aoki und Akinori Zukeran. „Miniaturization Technology of Exhaust Gas Cleaning System (SOx Scrubber)“. Journal of The Japan Institute of Marine Engineering 50, Nr. 3 (2015): 324–31. http://dx.doi.org/10.5988/jime.50.324.
Der volle Inhalt der QuelleDissertationen zum Thema "Exhaust gas cleaning"
Selås, Magnus. „Exhaust Gas Cleaning with Selective Catalytic Reduction (SCR)“. Thesis, Norges teknisk-naturvitenskapelige universitet, Institutt for marin teknikk, 2010. http://urn.kb.se/resolve?urn=urn:nbn:no:ntnu:diva-11615.
Der volle Inhalt der QuelleMoles, Nathaniel. „Investigation of techniques and effects of diesel particulate filter cleaning“. Morgantown, W. Va. : [West Virginia University Libraries], 2006. https://eidr.wvu.edu/etd/documentdata.eTD?documentid=4709.
Der volle Inhalt der QuelleTitle from document title page. Document formatted into pages; contains xi, 110 p. : ill. (some col.). Includes abstract. Includes bibliographical references (p. 87-92).
Kozii, Ivan, und Іван Козій. „Using a highly efficient gas cleaning equipment for reduction technogenic impact on the environment“. Thesis, National Aviation University, 2021. https://er.nau.edu.ua/handle/NAU/50966.
Der volle Inhalt der QuelleGrowth in the scale of economic activity leads to increased human impacts and disturbance of equilibrium in the environment. Along with the depletion of natural resources increases environmental pollution, in particular water and air. This significantly undermines the natural resource potential of the state’s development, negatively affects the welfare and health of the population, and poses a threat to environmental safety. Consuming natural resources, industrial enterprises are sources of complex environmental contamination. Activities of industrial enterprises has a negative impact on the state of ecosystems surrounding areas. Deposition of contaminants from the waste gases results in contamination of the soil and migration of heavy metals in the groundwater and surface water. The problem is compounded by the fact that the exhaust gases contain different by dispersion of the solid particles. This poses the problem of the development of environmental protection measures for air protection from emissions of industrial enterprises. One way to reduce the amount of pollutants released into the air with the flue gases is the selection of highly efficient gas-cleaning equipment, which must take into account several factors: physical and chemical characteristics of the carrier gas, the characteristics of chemical and particulate contaminants.
Зростання масштабів економічної діяльності призводить до посилення людського впливу та порушення рівноваги в навколишньому середовищі. Разом з виснаженням природних ресурсів збільшується забруднення навколишнього середовища, зокрема води та повітря. Це суттєво підриває природно-ресурсний потенціал розвитку держави, негативно впливає на добробут та здоров’я населення та створює загрозу екологічній безпеці. Споживаючи природні ресурси, промислові підприємства є джерелами складного забруднення навколишнього середовища. Діяльність промислових підприємств негативно впливає на стан екосистем навколишніх територій. Відкладення забруднень із відпрацьованих газів призводить до забруднення ґрунту та міграції важких металів у підземні та поверхневі води. Проблема ускладнюється тим, що вихлопні гази містять різні за рахунок дисперсії твердих частинок. Це ставить проблему розробки природоохоронних заходів щодо захисту повітря від викидів промислових підприємств. Одним із способів зменшити кількість забруднюючих речовин, що викидаються в повітря з димовими газами, є підбір високоефективного газоочисного обладнання, яке повинно враховувати декілька факторів: фізичні та хімічні характеристики газу-носія, характеристики хімічних та твердих частинок забруднювачі.
Brázda, Kryštof. „Konstrukční návrh elektrostatického odlučovače pro domovní kotel spalující dřevní paliva“. Master's thesis, Vysoké učení technické v Brně. Fakulta strojního inženýrství, 2021. http://www.nusl.cz/ntk/nusl-443220.
Der volle Inhalt der QuelleLiu, Hung-Hsuan, und 劉宏軒. „Numerical Simulation of Flow in the Diesel Engine Exhaust Gas Cleaning System (EGCS) for Desulfurization“. Thesis, 2019. http://ndltd.ncl.edu.tw/handle/2ujyf5.
Der volle Inhalt der Quelle國立臺灣海洋大學
輪機工程學系
108
The venting of vessel during the combustion of diesel engines and boilers is one of the sources of atmospheric pollution. According to the IMO regulations on reducing the emission of sulfur oxides from vessel in 2005, under the International Convention for the Prevention of Pollution from Vessel (known as the MARPOL Convention) The Annex VI is in force and the restrictions on sulfur oxides are becoming stricter. According to IMO's MECC.259 (68) resolution on the regulation of sulfur in global seas, from January 1, 2020, the sulfur content of fuel used on ships sailing outside the designated emission control area will be reduced to less than 0.5% m/m. . In order to reduce the sulfur content in the exhaust gas, in addition to the use of low-sulfur fuels that meet the standards, another solution is to install an exhaust gas cleaning system (EGCS). The sulfur content of diesel engine and boiler combustion exhaust gas and the use of desulfurization technology in onshore power plants are mature, and the world ship owners have begun to install and use it extensively. Therefore, this paper uses the Fluent® numerical calculation software to simulate the flue gas cleaning system (EGCS) process of the combustion equipment. The desulfurization towers designed for different internal flue structures are analyzed by the flue gas cleaning system (EGCS) flue gas and the flue gas flow in the reactor, and the process of removing sulfur oxides. The results show that the flue gas of the draft tube is relatively uniform, and the sulfur removal effect is increased. Key words: Flue Gas Cleaning System, Flue Gas Desulfurization, Sulfur Oxide, Numerical Simulation
Bücher zum Thema "Exhaust gas cleaning"
Monahan, Patricia. Cleaning up diesel pollution: Emissions from off-highway engines by state. Cambridge, MA: Union of Concerned Scientists, 2003.
Den vollen Inhalt der Quelle findenCragg, Chris. Cleaning up motor car pollution: New fuels and technology. London: Financial Times Business Information, 1992.
Den vollen Inhalt der Quelle findenLukanin, Aleksandr. Environmental Engineering: Processes and gas emissions purification devices. ru: INFRA-M Academic Publishing LLC., 2017. http://dx.doi.org/10.12737/24376.
Der volle Inhalt der QuelleBuchteile zum Thema "Exhaust gas cleaning"
Kamil, Md Salim, Muhammad Adli Mustapa, Nik Azri Bin Anuar und Muhammad Nashrulrizal Ahmad Khairi. „Viability of a Multi-stage Exhaust Gas Cleansing Module for Ship Installation“. In Advanced Maritime Technologies and Applications, 377–88. Cham: Springer International Publishing, 2022. http://dx.doi.org/10.1007/978-3-030-89992-9_33.
Der volle Inhalt der QuelleSawada, Jun, Yoshihiko Matsui, Karol Hensel, Ippei Koyamoto, Kazunori Takashima, Shinji Katsura und Akira Mizuno. „Micro-discharge in porous ceramics for exhaust gas cleaning“. In Recent Developments in Applied Electrostatics, 128–31. Elsevier, 2004. http://dx.doi.org/10.1016/b978-008044584-7.50032-3.
Der volle Inhalt der QuelleGhasemzadeh, Kamran, S. M. Sadati Tilebon und Angelo Basile. „Conventional systems for exhaust gas cleaning and carbon capture and sequestration“. In Current Trends and Future Developments on (Bio-) Membranes, 65–96. Elsevier, 2020. http://dx.doi.org/10.1016/b978-0-12-817807-2.00004-6.
Der volle Inhalt der QuelleGhasemzadeh, Kamran, S. M. Sadati Tilebon und Angelo Basile. „Membrane technologies for exhaust gas cleaning and carbon capture and sequestration“. In Current Trends and Future Developments on (Bio-) Membranes, 97–123. Elsevier, 2020. http://dx.doi.org/10.1016/b978-0-12-817807-2.00005-8.
Der volle Inhalt der QuelleÅberg, Andreas, Thomas K. Hansen, Kasper Linde, Anders K. Nielsen, Rune Damborg, Anders Widd, Jens Abildskov, Anker D. Jensen und Jakob K. Huusom. „A Framework for Modular Modeling of the Diesel Engine Exhaust Gas Cleaning System“. In 12th International Symposium on Process Systems Engineering and 25th European Symposium on Computer Aided Process Engineering, 455–60. Elsevier, 2015. http://dx.doi.org/10.1016/b978-0-444-63578-5.50071-2.
Der volle Inhalt der Quelle„DUST IN LIVESTOCK BUILDINGS AS A CARRIER OF ODOURS J. HARTUNG Institute for Animal Hygiene of the Hannover School of Veterinary Medicine, Blinteweg 17p, 3000 Hannover 71, FRG Summary The dust of animal houses originates mainly from the feed (80-90%), the bedding material, the manure (2-8%),and the animals (2-12%) themselves. It consists substanticaily of organic matter. The factors determining the amount of dust in confinements include animal activity, temperature,rel-ative humidity, ventilation rate, stocking density and volumetric air-space per animal, feeding method, and na ture of the feed. This dust originating from various sources can carry gases, vapours and odours. The analysis of dust-borne trace gases is usually done by solvent ex traction followed by gas chromatography. At least 60 com pounds belonging to different chemical groupings were i-dentified in the dust from animal houses. Volatile fatty acids and phenolic/indolic compounds were found to con tribute mostly to the strong, typical odour of animal houses. Main components in these groups are acetic acid and p-cresol, respectively. In the dust from pig houses qualitatively and quantitatively nearly the same volatile fatty acids and phenols are found than in the air or in the slurry. One m3 of the exhaust air from a 500 head pig fattening unit can contain dust-borne 6.27 pg volatile fatty acids and 2.76 yg phenolic/indolic compounds. The concentration of odours on the dust particles seems to be much greater than in an equal volume of air. Filtering the dust from the exhaust air can reduce the odour emission from animal houses up to 65%. Another way to reduce the dust-borne odour emission is to avoid the release of dust in the animal house by wet feeding, vacuum cleaning or showeri ng. 1. INTRODUCTION Dust in animal houses is an atmospheric contaminant of the environment of the animals (1). It is an important carrier of microorganisms (2), (3), (4), and can influence the perform ance and health of animal (5), (6), (7), and man (8),(9),(10). In addition the dust of animal houses was supposed to play an essential role in the transport of trace gas and odour inside and in spreading of odorous gases outside of the animal house (11), (12), (13), (14). This paper reports on the aspects of dust formation in livestock buildings, the material composition of the dust, the“. In Odour Prevention and Control of Organic Sludge and Livestock Farming, 335. CRC Press, 1986. http://dx.doi.org/10.1201/9781482286311-129.
Der volle Inhalt der QuelleKonferenzberichte zum Thema "Exhaust gas cleaning"
Guber, Andreas E., und Uwe Koehler. „On-line exhaust gas analytics during plasma cleaning of PECVD facilities“. In Microelectronic Manufacturing '95, herausgegeben von Anant G. Sabnis und Ivo J. Raaijmakers. SPIE, 1995. http://dx.doi.org/10.1117/12.221310.
Der volle Inhalt der QuelleGhaderi, Amir, Luke M. Middelburg, David Bilby, Jaco H. Visser, Per Lundgren, Peter Enoksson und Reinoud F. Wolffenbuttel. „Self-Cleaning Micro-Windows for In-Tailpipe Optical Exhaust Gas Measurements“. In 2020 IEEE 29th International Symposium on Industrial Electronics (ISIE). IEEE, 2020. http://dx.doi.org/10.1109/isie45063.2020.9152437.
Der volle Inhalt der QuelleGiroth, Ezra Johan, und Edward B. Ang. „The Design and Evaluation of Exhaust Gas Cleaning System Equipped with SOx Scrubber“. In 2022 IEEE 13th International Conference on Mechanical and Intelligent Manufacturing Technologies (ICMIMT). IEEE, 2022. http://dx.doi.org/10.1109/icmimt55556.2022.9845278.
Der volle Inhalt der QuelleDíaz Delgado, Nelson, und Francesc Xavier Martínez de Osés. „Open loop exhaust gas cleaning system and its effect over the Barcelona port water PH“. In Maritime Transport Conference. Universitat Politècnica de Catalunya. Iniciativa Digital Politècnica, 2022. http://dx.doi.org/10.5821/mt.11497.
Der volle Inhalt der QuelleCao, Yunpeng, Lie Chen, Jianwei Du, Fang Yu, Qingcai Yang und Minghao Wu. „The Degradation Simulation of Compressor Salt Fog Fouling for Marine Gas Turbine“. In ASME Turbo Expo 2017: Turbomachinery Technical Conference and Exposition. American Society of Mechanical Engineers, 2017. http://dx.doi.org/10.1115/gt2017-64464.
Der volle Inhalt der QuelleAl-Hajeri, M., A. Aroussi und S. J. Pickering. „Study of the Filtration Process Through a Ceramic Candle Filter“. In ASME 1999 International Gas Turbine and Aeroengine Congress and Exhibition. American Society of Mechanical Engineers, 1999. http://dx.doi.org/10.1115/99-gt-229.
Der volle Inhalt der QuelleAl-Hajeri, M., A. Aroussi und S. J. Pickering. „Study of the Filtration Process Through a Ceramic Candle Filter“. In ASME 1999 International Gas Turbine and Aeroengine Congress and Exhibition. American Society of Mechanical Engineers, 1999. http://dx.doi.org/10.1115/99-gt-354.
Der volle Inhalt der QuelleZakkay, V., E. A. M. Gbordzoe, K. M. Sellakumar und C. Q. Lu. „Performance of Hot Gas Clean-Up Devices Tested at the NYU DOE-PFBC Facility“. In 1989 Joint Power Generation Conference: GT Papers. American Society of Mechanical Engineers, 1989. http://dx.doi.org/10.1115/89-jpgc/gt-8.
Der volle Inhalt der QuelleLorra, Michael A., Carol A. Schnepper und Stephen Somers. „Investigation of a Duct Burner Design Using CFD in Comparison With Full-Scale Experiments“. In International Joint Power Generation Conference collocated with TurboExpo 2003. ASMEDC, 2003. http://dx.doi.org/10.1115/ijpgc2003-40080.
Der volle Inhalt der QuelleYan, Jinyue, Lars Eidensten und Gunnar Svedberg. „An Investigation of the Heat Recovery System in Externally Fired Evaporative Gas Turbines“. In ASME 1995 International Gas Turbine and Aeroengine Congress and Exposition. American Society of Mechanical Engineers, 1995. http://dx.doi.org/10.1115/95-gt-072.
Der volle Inhalt der Quelle