Um die anderen Arten von Veröffentlichungen zu diesem Thema anzuzeigen, folgen Sie diesem Link: Exact recovery.

Zeitschriftenartikel zum Thema „Exact recovery“

Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an

Wählen Sie eine Art der Quelle aus:

Machen Sie sich mit Top-50 Zeitschriftenartikel für die Forschung zum Thema "Exact recovery" bekannt.

Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.

Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.

Sehen Sie die Zeitschriftenartikel für verschiedene Spezialgebieten durch und erstellen Sie Ihre Bibliographie auf korrekte Weise.

1

Andrecut, M. „Exact Fourier spectrum recovery“. Physics Letters A 377, Nr. 1-2 (Dezember 2012): 1–6. http://dx.doi.org/10.1016/j.physleta.2012.10.018.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
2

Tsuda, Seiya, Yuji Iwahori, M. K. Bhuyan, Robert J. Woodham und Kunio Kasugai. „Recovering 3D Shape with Absolute Size from Endoscope Images Using RBF Neural Network“. International Journal of Biomedical Imaging 2015 (2015): 1–11. http://dx.doi.org/10.1155/2015/109804.

Der volle Inhalt der Quelle
Annotation:
Medical diagnosis judges the status of polyp from the size and the 3D shape of the polyp from its medical endoscope image. However the medical doctor judges the status empirically from the endoscope image and more accurate 3D shape recovery from its 2D image has been demanded to support this judgment. As a method to recover 3D shape with high speed, VBW (Vogel-Breuß-Weickert) model is proposed to recover 3D shape under the condition of point light source illumination and perspective projection. However, VBW model recovers the relative shape but there is a problem that the shape cannot be recovered with the exact size. Here, shape modification is introduced to recover the exact shape with modification from that with VBW model. RBF-NN is introduced for the mapping between input and output. Input is given as the output of gradient parameters of VBW model for the generated sphere. Output is given as the true gradient parameters of true values of the generated sphere. Learning mapping with NN can modify the gradient and the depth can be recovered according to the modified gradient parameters. Performance of the proposed approach is confirmed via computer simulation and real experiment.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
3

Cheded, L. „Exact recovery of higher order moments“. IEEE Transactions on Information Theory 44, Nr. 2 (März 1998): 851–58. http://dx.doi.org/10.1109/18.661534.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
4

Berthet, Quentin, Philippe Rigollet und Piyush Srivastava. „Exact recovery in the Ising blockmodel“. Annals of Statistics 47, Nr. 4 (August 2019): 1805–34. http://dx.doi.org/10.1214/17-aos1620.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
5

Dym, Nadav, und Yaron Lipman. „Exact Recovery with Symmetries for Procrustes Matching“. SIAM Journal on Optimization 27, Nr. 3 (Januar 2017): 1513–30. http://dx.doi.org/10.1137/16m1078628.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
6

Abbe, Emmanuel, Afonso S. Bandeira und Georgina Hall. „Exact Recovery in the Stochastic Block Model“. IEEE Transactions on Information Theory 62, Nr. 1 (Januar 2016): 471–87. http://dx.doi.org/10.1109/tit.2015.2490670.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
7

Duval, Vincent, und Gabriel Peyré. „Exact Support Recovery for Sparse Spikes Deconvolution“. Foundations of Computational Mathematics 15, Nr. 5 (09.10.2014): 1315–55. http://dx.doi.org/10.1007/s10208-014-9228-6.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
8

You, Qing Shan, und Qun Wan. „Principal Component Pursuit with Weighted Nuclear Norm“. Applied Mechanics and Materials 513-517 (Februar 2014): 1722–26. http://dx.doi.org/10.4028/www.scientific.net/amm.513-517.1722.

Der volle Inhalt der Quelle
Annotation:
Principal Component Pursuit (PCP) recovers low-dimensional structures from a small set of linear measurements, such as low rank matrix and sparse matrix. Pervious works mainly focus on exact recovery without additional noise. However, in many applications the observed measurements are corrupted by an additional white Gaussian noise (AWGN). In this paper, we model the recovered matrix the sum a low-rank matrix, a sparse matrix and an AWGN. We propose a weighted PCP for the recovery matrix, which is solved by alternating direction method. Numerical results show that the reconstructions performance of weighted PCP outperforms the classical PCP in term of accuracy.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
9

Chen, Xiaohui, und Yun Yang. „Cutoff for Exact Recovery of Gaussian Mixture Models“. IEEE Transactions on Information Theory 67, Nr. 6 (Juni 2021): 4223–38. http://dx.doi.org/10.1109/tit.2021.3063155.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
10

Hajek, Bruce, Yihong Wu und Jiaming Xu. „Achieving Exact Cluster Recovery Threshold via Semidefinite Programming“. IEEE Transactions on Information Theory 62, Nr. 5 (Mai 2016): 2788–97. http://dx.doi.org/10.1109/tit.2016.2546280.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
11

Yang, Zai, und Lihua Xie. „Exact Joint Sparse Frequency Recovery via Optimization Methods“. IEEE Transactions on Signal Processing 64, Nr. 19 (01.10.2016): 5145–57. http://dx.doi.org/10.1109/tsp.2016.2576422.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
12

Lerman, Gilad, Yunpeng Shi und Teng Zhang. „Exact Camera Location Recovery by Least Unsquared Deviations“. SIAM Journal on Imaging Sciences 11, Nr. 4 (Januar 2018): 2692–721. http://dx.doi.org/10.1137/17m115061x.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
13

Hand, Paul, Choongbum Lee und Vladislav Voroninski. „ShapeFit: Exact Location Recovery from Corrupted Pairwise Directions“. Communications on Pure and Applied Mathematics 71, Nr. 1 (16.11.2017): 3–50. http://dx.doi.org/10.1002/cpa.21727.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
14

KONG, LINGCHEN, und NAIHUA XIU. „EXACT LOW-RANK MATRIX RECOVERY VIA NONCONVEX SCHATTEN p-MINIMIZATION“. Asia-Pacific Journal of Operational Research 30, Nr. 03 (Juni 2013): 1340010. http://dx.doi.org/10.1142/s0217595913400101.

Der volle Inhalt der Quelle
Annotation:
The low-rank matrix recovery (LMR) arises in many fields such as signal and image processing, quantum state tomography, magnetic resonance imaging, system identification and control, and it is generally NP-hard. Recently, Majumdar and Ward [Majumdar, A and RK Ward (2011). An algorithm for sparse MRI reconstruction by Schatten p-norm minimization. Magnetic Resonance Imaging, 29, 408–417]. had successfully applied nonconvex Schatten p-minimization relaxation of LMR in magnetic resonance imaging. In this paper, our main aim is to establish RIP theoretical result for exact LMR via nonconvex Schatten p-minimization. Carefully speaking, letting [Formula: see text] be a linear transformation from ℝm×n into ℝs and r be the rank of recovered matrix X ∈ ℝm×n, and if [Formula: see text] satisfies the RIP condition [Formula: see text] for a given positive integer k ∈ {1, 2, …, m – r}, then r-rank matrix can be exactly recovered. In particular, we obtain a uniform bound on restricted isometry constant [Formula: see text] for any p ∈ (0, 1] for LMR via Schatten p-minimization.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
15

Eswaraiah, R., und E. Sreenivasa Reddy. „Medical Image Watermarking Technique for Accurate Tamper Detection in ROI and Exact Recovery of ROI“. International Journal of Telemedicine and Applications 2014 (2014): 1–10. http://dx.doi.org/10.1155/2014/984646.

Der volle Inhalt der Quelle
Annotation:
In telemedicine while transferring medical images tampers may be introduced. Before making any diagnostic decisions, the integrity of region of interest (ROI) of the received medical image must be verified to avoid misdiagnosis. In this paper, we propose a novel fragile block based medical image watermarking technique to avoid embedding distortion inside ROI, verify integrity of ROI, detect accurately the tampered blocks inside ROI, and recover the original ROI with zero loss. In this proposed method, the medical image is segmented into three sets of pixels: ROI pixels, region of noninterest (RONI) pixels, and border pixels. Then, authentication data and information of ROI are embedded in border pixels. Recovery data of ROI is embedded into RONI. Results of experiments conducted on a number of medical images reveal that the proposed method produces high quality watermarked medical images, identifies the presence of tampers inside ROI with 100% accuracy, and recovers the original ROI without any loss.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
16

Zhao, Feng, Min Ye und Shao-Lun Huang. „Exact Recovery of Stochastic Block Model by Ising Model“. Entropy 23, Nr. 1 (02.01.2021): 65. http://dx.doi.org/10.3390/e23010065.

Der volle Inhalt der Quelle
Annotation:
In this paper, we study the phase transition property of an Ising model defined on a special random graph—the stochastic block model (SBM). Based on the Ising model, we propose a stochastic estimator to achieve the exact recovery for the SBM. The stochastic algorithm can be transformed into an optimization problem, which includes the special case of maximum likelihood and maximum modularity. Additionally, we give an unbiased convergent estimator for the model parameters of the SBM, which can be computed in constant time. Finally, we use metropolis sampling to realize the stochastic estimator and verify the phase transition phenomenon thfough experiments.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
17

Gao, Zheng, und Stilian Stoev. „Fundamental limits of exact support recovery in high dimensions“. Bernoulli 26, Nr. 4 (November 2020): 2605–38. http://dx.doi.org/10.3150/20-bej1197.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
18

Tran, Giang, und Rachel Ward. „Exact Recovery of Chaotic Systems from Highly Corrupted Data“. Multiscale Modeling & Simulation 15, Nr. 3 (Januar 2017): 1108–29. http://dx.doi.org/10.1137/16m1086637.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
19

Hajek, Bruce, Yihong Wu und Jiaming Xu. „Achieving Exact Cluster Recovery Threshold via Semidefinite Programming: Extensions“. IEEE Transactions on Information Theory 62, Nr. 10 (Oktober 2016): 5918–37. http://dx.doi.org/10.1109/tit.2016.2594812.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
20

Yin, Zi-qiang. „Exact wavefront recovery with tilt from lateral shear interferograms“. Applied Optics 48, Nr. 14 (07.05.2009): 2760. http://dx.doi.org/10.1364/ao.48.002760.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
21

Rahnama Rad, Kamiar. „Nearly Sharp Sufficient Conditions on Exact Sparsity Pattern Recovery“. IEEE Transactions on Information Theory 57, Nr. 7 (Juli 2011): 4672–79. http://dx.doi.org/10.1109/tit.2011.2145670.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
22

Wang, L., und A. Singer. „Exact and stable recovery of rotations for robust synchronization“. Information and Inference 2, Nr. 2 (27.09.2013): 145–93. http://dx.doi.org/10.1093/imaiai/iat005.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
23

Samani, Nozar, und M. Pasandi. „Retracted:A Single Recovery Type Curve from Theis' Exact Solution“. Ground Water 41, Nr. 5 (September 2003): 602–7. http://dx.doi.org/10.1111/j.1745-6584.2003.tb02398.x.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
24

Dym, Nadav. „Exact Recovery with Symmetries for the Doubly Stochastic Relaxation“. SIAM Journal on Applied Algebra and Geometry 2, Nr. 3 (Januar 2018): 462–88. http://dx.doi.org/10.1137/17m1132264.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
25

Konyagin, S. V., Yu V. Malykhin und K. S. Ryutin. „On exact recovery of sparse vectors from linear measurements“. Mathematical Notes 94, Nr. 1-2 (Juli 2013): 107–14. http://dx.doi.org/10.1134/s0001434613070109.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
26

Li, Chao, Mohammad Emtiyaz Khan, Zhun Sun, Gang Niu, Bo Han, Shengli Xie und Qibin Zhao. „Beyond Unfolding: Exact Recovery of Latent Convex Tensor Decomposition Under Reshuffling“. Proceedings of the AAAI Conference on Artificial Intelligence 34, Nr. 04 (03.04.2020): 4602–9. http://dx.doi.org/10.1609/aaai.v34i04.5890.

Der volle Inhalt der Quelle
Annotation:
Exact recovery of tensor decomposition (TD) methods is a desirable property in both unsupervised learning and scientific data analysis. The numerical defects of TD methods, however, limit their practical applications on real-world data. As an alternative, convex tensor decomposition (CTD) was proposed to alleviate these problems, but its exact-recovery property is not properly addressed so far. To this end, we focus on latent convex tensor decomposition (LCTD), a practically widely-used CTD model, and rigorously prove a sufficient condition for its exact-recovery property. Furthermore, we show that such property can be also achieved by a more general model than LCTD. In the new model, we generalize the classic tensor (un-)folding into reshuffling operation, a more flexible mapping to relocate the entries of the matrix into a tensor. Armed with the reshuffling operations and exact-recovery property, we explore a totally novel application for (generalized) LCTD, i.e., image steganography. Experimental results on synthetic data validate our theory, and results on image steganography show that our method outperforms the state-of-the-art methods.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
27

Boikov, Ilia V., und Nikolay P. Krivulin. „Non-stationary dynamic system characteristics recovery from three test signals“. Izmeritel`naya Tekhnika, Nr. 3 (2020): 9–15. http://dx.doi.org/10.32446/0368-1025it.2020-3-9-15.

Der volle Inhalt der Quelle
Annotation:
Algorithms of exact restoration in an analytical form of dynamic characteristics of non-stationary dynamic systems are constructed. Non-stationary continuous dynamical systems modeled by Volterra integral equations of the first kind and non-stationary discrete dynamical systems modeled by discrete analogues of Volterra integral equations of the first kind are considered.The article consists of an introduction and three sections: 1) The exact restoration of the dynamic characteristics of continuous systems, 2) The restoration of the transition characteristics of discrete systems, 3) Conclusions. The introduction provides a statement of the problem and provides an overview of dynamical systems for which algorithms for exact reconstruction in ananalytical form of the impulse response (in the case of continuous systems) and the transition characteristic (in the case of discrete systems) are constructed. In the first section, the algorithm is constructed for the exact reconstruction of the impulse response of an non-stationary continuous dynamic system from three interconnected input signals. The first signal may be arbitrary, the second and third signals are associated with the first signal by integral operator. The exact formula for the Laplace transform of the impulse response, represented by an algebraic expression from the Laplace transform of the system output signals, is given. A model example illustrating the effectiveness of the algorithm is given. The practical application of the presented algorithm isdiscussed. In the second section, an algorithm is constructed for the exact reconstruction of the transition response of a non-stationary discrete dynamical system from three input signals that are interconnected. The first signal may be arbitrary, the second and third signals are associated with the first summing operator. The exact formula of the Z-transform of the transition characteristic is presented, which is represented by an algebraic expression from the Z-transform of the system output signals. A model example is given. The “Conclusions” section provides a summary of the results presented in the article and describes the dynamic systems to which the proposed algorithms can be extended.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
28

Han, Zhi, Jianjun Wang, Jia Jing und Hai Zhang. „A Simple Gaussian Measurement Bound for Exact Recovery of Block-Sparse Signals“. Discrete Dynamics in Nature and Society 2014 (2014): 1–8. http://dx.doi.org/10.1155/2014/104709.

Der volle Inhalt der Quelle
Annotation:
We present a probabilistic analysis on conditions of the exact recovery of block-sparse signals whose nonzero elements appear in fixed blocks. We mainly derive a simple lower bound on the necessary number of Gaussian measurements for exact recovery of such block-sparse signals via the mixedl2/lq (0<q≤1)norm minimization method. In addition, we present numerical examples to partially support the correctness of the theoretical results. The obtained results extend those known for the standardlqminimization and the mixedl2/l1minimization methods to the mixedl2/lq (0<q≤1)minimization method in the context of block-sparse signal recovery.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
29

Nishimura, Koichi, Saya Nakamura, Masaaki Kusunose, Kazuhito Nakayasu, Ryo Sanda, Yoshinori Hasegawa und Toru Oga. „Comparison of patient-reported outcomes during acute exacerbations of chronic obstructive pulmonary disease“. BMJ Open Respiratory Research 5, Nr. 1 (Oktober 2018): e000305. http://dx.doi.org/10.1136/bmjresp-2018-000305.

Der volle Inhalt der Quelle
Annotation:
IntroductionThe aim of this study was to investigate which patient-reported outcome measure was the best during the recovery phase from severe exacerbation of chronic obstructive pulmonary disease (COPD).MethodsThe Exacerbations of Chronic Pulmonary Disease Tool (EXACT), the COPD Assessment Test (CAT), the St George’s Respiratory Questionnaire (SGRQ), the Dyspnoea-12 (D-12) and the Hyland Scale (global scale) were recorded every week for the first month and at 2 and 3 months in 33 hospitalised subjects with acute exacerbation of COPD (AECOPD).ResultsOn the day of admission (day 1), the internal consistency of the EXACT total score was high (Cronbach’s alpha coefficient=0.89). The EXACT total, CAT, SGRQ total and Hyland Scale scores obtained on day 1 appeared to be normally distributed. Neither floor nor ceiling effects were observed for the EXACT total and SGRQ total scores. The EXACT total score improved from 50.5±12.4 to 32.5±14.3, and the CAT score also improved from 24.4±8.5 to 13.5±8.4 during the first 2 weeks, and the effect sizes (ES) of the EXACT total and CAT score were −1.40 and −1.36, respectively. The SGRQ, Hyland Scale and D-12 were less responsive, with ES of −0.59, 0.96 and −0.90, respectively.DiscussionThe EXACT total and CAT scores are shown to be more responsive measures during the recovery phase from severe exacerbation. Considering the conceptual framework, it is recommended that the EXACT total score may be the best measure during the recovery phase from AECOPD. The reasons for the outstanding responsiveness of the CAT are still unknown.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
30

sci, Anping Liao. „The Exact Recovery of Sparse Signals Via Orthogonal Matching Pursuit“. Journal of Computational Mathematics 34, Nr. 1 (Juni 2016): 70–86. http://dx.doi.org/10.4208/jcm.1510-m2015-0284.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
31

Ye, Min. „Exact Recovery and Sharp Thresholds of Stochastic Ising Block Model“. IEEE Transactions on Information Theory 67, Nr. 12 (Dezember 2021): 8207–35. http://dx.doi.org/10.1109/tit.2021.3117264.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
32

Ye, Min. „Exact Recovery and Sharp Thresholds of Stochastic Ising Block Model“. IEEE Transactions on Information Theory 67, Nr. 12 (Dezember 2021): 8207–35. http://dx.doi.org/10.1109/tit.2021.3117264.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
33

Herzet, Cedric, Charles Soussen, Jerome Idier und Remi Gribonval. „Exact Recovery Conditions for Sparse Representations With Partial Support Information“. IEEE Transactions on Information Theory 59, Nr. 11 (November 2013): 7509–24. http://dx.doi.org/10.1109/tit.2013.2278179.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
34

Dan, Wei, und Yu Fu. „Exact support recovery via orthogonal matching pursuit from noisy measurements“. Electronics Letters 52, Nr. 17 (August 2016): 1497–99. http://dx.doi.org/10.1049/el.2016.1893.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
35

Determe, Jean-Francois, Jerome Louveaux, Laurent Jacques und Francois Horlin. „On The Exact Recovery Condition of Simultaneous Orthogonal Matching Pursuit“. IEEE Signal Processing Letters 23, Nr. 1 (Januar 2016): 164–68. http://dx.doi.org/10.1109/lsp.2015.2506989.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
36

Zhai, Dede, Shanyong Chen, Shuai Xue und Ziqiang Yin. „Exact recovery of wavefront from multishearing interferograms in spatial domain“. Applied Optics 55, Nr. 28 (29.09.2016): 8063. http://dx.doi.org/10.1364/ao.55.008063.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
37

Yang, Jung-Min. „Exact fault recovery for asynchronous sequential machines with output bursts“. Automatica 97 (November 2018): 115–20. http://dx.doi.org/10.1016/j.automatica.2018.08.001.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
38

Qu, Qing, Xiao Li und Zhihui Zhu. „Exact Recovery of Multichannel Sparse Blind Deconvolution via Gradient Descent“. SIAM Journal on Imaging Sciences 13, Nr. 3 (Januar 2020): 1630–52. http://dx.doi.org/10.1137/19m1291327.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
39

Saad, Hussein, und Aria Nosratinia. „Exact Recovery in Community Detection With Continuous-Valued Side Information“. IEEE Signal Processing Letters 26, Nr. 2 (Februar 2019): 332–36. http://dx.doi.org/10.1109/lsp.2018.2889920.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
40

Trede, Dennis. „Exact support recovery for linear inverse problems with sparsity constraints“. Methods and Applications of Analysis 18, Nr. 1 (2011): 105–10. http://dx.doi.org/10.4310/maa.2011.v18.n1.a7.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
41

Ovall, Jeffrey S. „Asymptotically exact functional error estimators based on superconvergent gradient recovery“. Numerische Mathematik 102, Nr. 3 (15.11.2005): 543–58. http://dx.doi.org/10.1007/s00211-005-0655-9.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
42

Guo, Ping, Changhua Wei, Wenjun Xiong und Chunlan Zhao. „Exact Boundary Controller Design for a Kind of Enhanced Oil Recovery Models“. Abstract and Applied Analysis 2014 (2014): 1–9. http://dx.doi.org/10.1155/2014/747092.

Der volle Inhalt der Quelle
Annotation:
The exact boundary controllability of a class of enhanced oil recovery systems is discussed in this paper. With a simple transformation, the enhanced oil recovery model is first affirmed to be neither genuinely nonlinear nor linearly degenerate. It is then shown that the enhanced oil recovery system with nonlinear boundary conditions is exactly boundary controllable by applying a constructed method. Moreover, an interval of the control time is presented to not only give the optimal control time but also show the time for avoiding the blowup of the controllable solution. Finally, an example is given to illustrate the effectiveness of the proposed criterion.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
43

Osipenko, Konstantin Yur'evich. „Recovery of analytic functions that is exact on subspaces of entire functions“. Sbornik: Mathematics 215, Nr. 3 (2024): 383–400. http://dx.doi.org/10.4213/sm9976e.

Der volle Inhalt der Quelle
Annotation:
A family of optimal recovery methods is developed for the recovery of analytic functions in a strip and their derivatives from inaccurately specified trace of the Fourier transforms of these functions on the real axis. In addition, the methods must be exact on some subspaces of entire functions. Bibliography: 12 titles.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
44

Wang, Runsong, Xuelian Li, Juntao Gao, Hui Li und Baocang Wang. „Quantum rotational cryptanalysis for preimage recovery of round-reduced Keccak“. Quantum Information & Computation 23, Nr. 3&4 (Februar 2023): 223–34. http://dx.doi.org/10.26421/qic23.3-4-3.

Der volle Inhalt der Quelle
Annotation:
The Exclusive-OR Sum-of-Product (ESOP) minimization problem has long been of interest to the research community because of its importance in classical logic design (including low-power design and design for test), reversible logic synthesis, and knowledge discovery, among other applications. However, no exact minimal minimization method has been presented for more than seven variables on arbitrary functions. This paper presents a novel quantum-classical hybrid algorithm for the exact minimal ESOP minimization of incompletely specified Boolean functions. This algorithm constructs oracles from sets of constraints and leverages the quantum speedup offered by Grover's algorithm to find solutions to these oracles, thereby improving over classical algorithms. Improved encoding of ESOP expressions results in substantially fewer decision variables compared to many existing algorithms for many classes of Boolean functions. This paper also extends the idea of exact minimal ESOP minimization to additionally minimize the cost of realizing an ESOP expression as a quantum circuit. To the extent of the authors' knowledge, such a method has never been published. This algorithm was tested on completely and incompletely specified Boolean functions via quantum simulation.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
45

Fuchs, J. J. „Recovery of Exact Sparse Representations in the Presence of Bounded Noise“. IEEE Transactions on Information Theory 51, Nr. 10 (Oktober 2005): 3601–8. http://dx.doi.org/10.1109/tit.2005.855614.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
46

Cole, Sam, und Yizhe Zhu. „Exact recovery in the hypergraph stochastic block model: A spectral algorithm“. Linear Algebra and its Applications 593 (Mai 2020): 45–73. http://dx.doi.org/10.1016/j.laa.2020.01.039.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
47

Jaulmes, Luc, Miquel Moreto, Eduard Ayguade, Jesus Labarta, Mateo Valero und Marc Casas. „Asynchronous and Exact Forward Recovery for Detected Errors in Iterative Solvers“. IEEE Transactions on Parallel and Distributed Systems 29, Nr. 9 (01.09.2018): 1961–74. http://dx.doi.org/10.1109/tpds.2018.2817524.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
48

Wen, Jinming, Zhengchun Zhou, Jian Wang, Xiaohu Tang und Qun Mo. „A Sharp Condition for Exact Support Recovery With Orthogonal Matching Pursuit“. IEEE Transactions on Signal Processing 65, Nr. 6 (15.03.2017): 1370–82. http://dx.doi.org/10.1109/tsp.2016.2634550.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
49

Xiao, Dafei, Qian Ye, Zhan Tong, Binbin Xiang und Na Wang. „Exact phase recovery applying only phase modulations in an isolated region“. Optics and Lasers in Engineering 134 (November 2020): 106278. http://dx.doi.org/10.1016/j.optlaseng.2020.106278.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
50

Cui, Angang, Jigen Peng und Haiyang Li. „Exact recovery low-rank matrix via transformed affine matrix rank minimization“. Neurocomputing 319 (November 2018): 1–12. http://dx.doi.org/10.1016/j.neucom.2018.05.092.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
Wir bieten Rabatte auf alle Premium-Pläne für Autoren, deren Werke in thematische Literatursammlungen aufgenommen wurden. Kontaktieren Sie uns, um einen einzigartigen Promo-Code zu erhalten!

Zur Bibliographie