Inhaltsverzeichnis
Auswahl der wissenschaftlichen Literatur zum Thema „EVs-Collagen Interaction“
Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an
Machen Sie sich mit den Listen der aktuellen Artikel, Bücher, Dissertationen, Berichten und anderer wissenschaftlichen Quellen zum Thema "EVs-Collagen Interaction" bekannt.
Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.
Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.
Zeitschriftenartikel zum Thema "EVs-Collagen Interaction"
Velázquez-Enríquez, Juan Manuel, Jovito Cesar Santos-Álvarez, Alma Aurora Ramírez-Hernández, Edilburga Reyes-Jiménez, Armando López-Martínez, Socorro Pina-Canseco, Sergio Roberto Aguilar-Ruiz et al. „Proteomic Analysis Reveals Key Proteins in Extracellular Vesicles Cargo Associated with Idiopathic Pulmonary Fibrosis In Vitro“. Biomedicines 9, Nr. 8 (20.08.2021): 1058. http://dx.doi.org/10.3390/biomedicines9081058.
Der volle Inhalt der QuelleColombini, Alessandra, Enrico Ragni, Leonardo Mortati, Francesca Libonati, Carlotta Perucca Orfei, Marco Viganò, Marco Brayda-Bruno und Laura de Girolamo. „Adipose-Derived Mesenchymal Stromal Cells Treated with Interleukin 1 Beta Produced Chondro-Protective Vesicles Able to Fast Penetrate in Cartilage“. Cells 10, Nr. 5 (12.05.2021): 1180. http://dx.doi.org/10.3390/cells10051180.
Der volle Inhalt der QuelleCoenen, Daniëlle M., Alexandra C. A. Heinzmann, Silvia Oggero, Hugo J. Albers, Magdolna Nagy, Perrine Hagué, Marijke J. E. Kuijpers et al. „Inhibition of Phosphodiesterase 3A by Cilostazol Dampens Proinflammatory Platelet Functions“. Cells 10, Nr. 8 (05.08.2021): 1998. http://dx.doi.org/10.3390/cells10081998.
Der volle Inhalt der QuelleGoldberg, Drew, Ann Gaffey, Minna Chen, Elizabeth Li, Samuel Kim, Zoe Tran, Jason Burdick und Pavan Atluri. „3496 Mesenchymal Stem Cell Extracellular Vesicle Delivery in a Shear-Thinning Hydrogel For Therapy in an Acute Myocardial Infarction Model: A Comparative Analysis“. Journal of Clinical and Translational Science 3, s1 (März 2019): 109. http://dx.doi.org/10.1017/cts.2019.249.
Der volle Inhalt der QuelleLiang, Yu, Siyi Wang, Tianci An, Imran Tarique, Waseem Ail Vistro, Yifei Liu, Ziyu Wang et al. „Telocytes as a Novel Structural Component in the Muscle Layers of the Goat Rumen“. Cell Transplantation 28, Nr. 7 (26.04.2019): 955–66. http://dx.doi.org/10.1177/0963689719842514.
Der volle Inhalt der QuelleMansour, Ali, Walaa Darwiche, Linda Yaker, Sophie Da Nascimento, Cathy Gomila, Claire Rossi, Vincent Jung et al. „GFOGER Peptide Modifies the Protein Content of Extracellular Vesicles and Inhibits Vascular Calcification“. Frontiers in Cell and Developmental Biology 8 (30.11.2020). http://dx.doi.org/10.3389/fcell.2020.589761.
Der volle Inhalt der QuelleDissertationen zum Thema "EVs-Collagen Interaction"
Mansour, Ali. „Mécanismes physiopathologiques de la calcification vasculaire : les vésicules extracellulaires comme cible thérapeutique potentielle“. Thesis, Amiens, 2020. http://www.theses.fr/2020AMIE0029.
Der volle Inhalt der QuelleCardiovascular diseases (CVDs) are classified on top of the list among different death leading causes in the world. Calcification of the vessel wall leads to various critical cardiovascular consequences and accounts for high mortality rates in patients with many diseases like diabetes, atherosclerosis and chronic kidney disease (CKD). VC is an active process with features of bone physiology and it is regulated by multifactorial inductive and inhibitory processes. During the calcification process, Vascular Smooth Muscle Cells (VSMCs) undergo active osteogenic process to become osteoblast-like cells and release heterogeneous populations of Extracellular Vesicles (EVs). EVs act as nucleating foci for crystallization through their interaction with type 1 collagen (Col1) via integrins and their procalcifying protein content strongly supports calcification progression. Because these two mechanisms are crucial for the development of VC, they eventually represent two therapeutic targets for VC regression. Our primary objective was to identify new natural or chemically synthesized molecules that can inhibit VC. We demonstrated the ability of a specific oligogalacturonic acid (DP8), extracted from flax seeds, to inhibit in vitro and ex-vivo Pi-induced calcification by diminishing osteogenic markers expression, masking a consensus amino acid repeat found in Col1 (sequence: GFOGER), and thus preventing EVs from binding. Also we chemically synthesized a GFOGER peptide and checked its ability to inhibit calcification. Similar to DP8, GFOGER peptide was able to inhibit in vitro and ex-vivo Pi-induced calcification by downregulating osteogenic markers expression and through modifying the protein content of VSMCs derived EVs. Therefore, our work suggests two novel therapeutic approaches for the prevention of VC