Inhaltsverzeichnis
Auswahl der wissenschaftlichen Literatur zum Thema „Evolutionary development of neural network“
Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an
Machen Sie sich mit den Listen der aktuellen Artikel, Bücher, Dissertationen, Berichten und anderer wissenschaftlichen Quellen zum Thema "Evolutionary development of neural network" bekannt.
Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.
Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.
Zeitschriftenartikel zum Thema "Evolutionary development of neural network"
Al-Khowarizmi, Al-Khowarizmi. „Model Classification Of Nominal Value And The Original Of IDR Money By Applying Evolutionary Neural Network“. JOURNAL OF INFORMATICS AND TELECOMMUNICATION ENGINEERING 3, Nr. 2 (20.01.2020): 258–65. http://dx.doi.org/10.31289/jite.v3i2.3284.
Der volle Inhalt der QuelleLi, Xiao Guang. „Research on the Development and Applications of Artificial Neural Networks“. Applied Mechanics and Materials 556-562 (Mai 2014): 6011–14. http://dx.doi.org/10.4028/www.scientific.net/amm.556-562.6011.
Der volle Inhalt der QuelleXue, Yu, Pengcheng Jiang, Ferrante Neri und Jiayu Liang. „A Multi-Objective Evolutionary Approach Based on Graph-in-Graph for Neural Architecture Search of Convolutional Neural Networks“. International Journal of Neural Systems 31, Nr. 09 (24.07.2021): 2150035. http://dx.doi.org/10.1142/s0129065721500350.
Der volle Inhalt der QuelleOdri, Stevan V., Dusan P. Petrovacki und Gordana A. Krstonosic. „Evolutional development of a multilevel neural network“. Neural Networks 6, Nr. 4 (Januar 1993): 583–95. http://dx.doi.org/10.1016/s0893-6080(05)80061-9.
Der volle Inhalt der QuelleLI, KANG, und JIAN-XUN PENG. „SYSTEM ORIENTED NEURAL NETWORKS — PROBLEM FORMULATION, METHODOLOGY AND APPLICATION“. International Journal of Pattern Recognition and Artificial Intelligence 20, Nr. 02 (März 2006): 143–58. http://dx.doi.org/10.1142/s0218001406004570.
Der volle Inhalt der QuelleWu, Tao, Jiao Shi, Deyun Zhou, Xiaolong Zheng und Na Li. „Evolutionary Multi-Objective One-Shot Filter Pruning for Designing Lightweight Convolutional Neural Network“. Sensors 21, Nr. 17 (02.09.2021): 5901. http://dx.doi.org/10.3390/s21175901.
Der volle Inhalt der QuelleDebeljak, Željko, Viktor Marohnić, Goran Srečnik und Marica Medić-Šarić. „Novel approach to evolutionary neural network based descriptor selection and QSAR model development“. Journal of Computer-Aided Molecular Design 19, Nr. 12 (11.04.2006): 835–55. http://dx.doi.org/10.1007/s10822-005-9022-2.
Der volle Inhalt der QuelleJung, Sung Young. „A Topographical Method for the Development of Neural Networks for Artificial Brain Evolution“. Artificial Life 11, Nr. 3 (Juni 2005): 293–316. http://dx.doi.org/10.1162/1064546054407185.
Der volle Inhalt der QuelleBury, Y. A., und D. I. Samal. „APPLICATION OF THE EVOLUTIONARY PARADIGM TO DESIGNING ARCHITEСTURE OF A NEURAL NETWORK FOR RECOGNIZING THE DISTORTED TEXT“. «System analysis and applied information science», Nr. 4 (08.02.2018): 45–50. http://dx.doi.org/10.21122/2309-4923-2017-4-45-50.
Der volle Inhalt der QuelleKhan, Gul Muhammad, Julian F. Miller und David M. Halliday. „Evolution of Cartesian Genetic Programs for Development of Learning Neural Architecture“. Evolutionary Computation 19, Nr. 3 (September 2011): 469–523. http://dx.doi.org/10.1162/evco_a_00043.
Der volle Inhalt der QuelleDissertationen zum Thema "Evolutionary development of neural network"
Bush, Brian O. „Development of a fuzzy system design strategy using evolutionary computation“. Ohio : Ohio University, 1996. http://www.ohiolink.edu/etd/view.cgi?ohiou1178656308.
Der volle Inhalt der QuelleTownsend, Joseph Paul. „Artificial development of neural-symbolic networks“. Thesis, University of Exeter, 2014. http://hdl.handle.net/10871/15162.
Der volle Inhalt der QuelleHytychová, Tereza. „Evoluční návrh neuronových sítí využívající generativní kódování“. Master's thesis, Vysoké učení technické v Brně. Fakulta informačních technologií, 2021. http://www.nusl.cz/ntk/nusl-445478.
Der volle Inhalt der QuelleKadiyala, Akhil. „Development and Evaluation of an Integrated Approach to Study In-Bus Exposure Using Data Mining and Artificial Intelligence Methods“. University of Toledo / OhioLINK, 2012. http://rave.ohiolink.edu/etdc/view?acc_num=toledo1341257080.
Der volle Inhalt der QuelleAdams, Bryan (Bryan Paul) 1977. „Evolutionary, developmental neural networks for robust robotic control“. Thesis, Massachusetts Institute of Technology, 2006. http://hdl.handle.net/1721.1/37900.
Der volle Inhalt der QuelleIncludes bibliographical references (p. 136-143).
The use of artificial evolution to synthesize controllers for physical robots is still in its infancy. Most applications are on very simple robots in artificial environments, and even these examples struggle to span the "reality gap," a name given to the difference between the performance of a simulated robot and the performance of a.real robot using the same evolved controller. This dissertation describes three methods for improving the use of artificial evolution as a tool for generating controllers for physical robots. First, the evolutionary process must incorporate testing on the physical robot. Second, repeated structure on the robot should be exploited. Finally, prior knowledge about the robot and task should be meaningfully incorporated. The impact of these three methods, both in simulation and on physical robots, is demonstrated, quantified, and compared to hand-designed controllers.
by Bryan Adams.
Ph.D.
Tsui, Kwok Ching. „Neural network design using evolutionary computing“. Thesis, King's College London (University of London), 1998. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.299918.
Der volle Inhalt der QuelleHayward, Serge. „Financial forecasting and modelling with an evolutionary artificial neural network“. Thesis, Queen Mary, University of London, 2006. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.439394.
Der volle Inhalt der QuelleHlynka, Markian D. „A framework for an automated neural network designer using evolutionary algorithms“. Thesis, National Library of Canada = Bibliothèque nationale du Canada, 1999. http://www.collectionscanada.ca/obj/s4/f2/dsk1/tape7/PQDD_0014/MQ41716.pdf.
Der volle Inhalt der QuelleJagadeesan, Ananda Prasanna. „Real time evolutionary algorithms in robotic neural control systems“. Thesis, Robert Gordon University, 2006. http://hdl.handle.net/10059/436.
Der volle Inhalt der QuelleJakobsson, Henrik. „Inversion of an Artificial Neural Network Mapping by Evolutionary Algorithms with Sharing“. Thesis, University of Skövde, Department of Computer Science, 1998. http://urn.kb.se/resolve?urn=urn:nbn:se:his:diva-165.
Der volle Inhalt der QuelleInversion of the artificial neural network mapping is a relatively unexplored field of science. By inversion we mean that a search is conducted to find what input patterns that corresponds to a specific output pattern according to the analysed network. In this report, an evolutionary algorithm is proposed to conduct the search for input patterns. The hypothesis is that the inversion with the evolutionary search-method will result in multiple, separate and equivalent input patterns and not get stuck in local optima which possibly would cause the inversion to result in erroneous answer. Beside proving the hypothesis, the tests are also aimed at explaining the nature of inversion and how the result of inversion should be interpreted. At the end of the document a long list of proposed future work is suggested. Work, which might result in a deeper understanding of what the inversion means and maybe an automated analysis tool, based on inversion.
Bücher zum Thema "Evolutionary development of neural network"
Lou, Padgett Mary, Lindblad Thomas, Society for Computer Simulation und United States. National Aeronautics and Space Administration., Hrsg. Sixth, Seventh, and Eighth Workshops on Virtual Intelligence: Academic/Industrial/NASA/Defense: Technical interchange and tutorials : International Conferences on Virtual Intelligence, Fuzzy Systems, Evolutionary Computing, and Virtual Reality 1996. Bellingham, Wash: SPIE, 1996.
Den vollen Inhalt der Quelle findenC, Jain L., und Johnson R. P, Hrsg. Automatic generation of neural network architecture using evolutionary computation. Singapore: World Scientific, 1997.
Den vollen Inhalt der Quelle findenJorgensen, Charles C. Development of a sensor coordinated kinematic model for neural network controller training. [Moffett Field, Calif.?]: Research Institute for Advanced Computer Science, NASA Ames Research Center, 1990.
Den vollen Inhalt der Quelle findenInternational, Symposium on Computational Intelligence and Design (1st 2008 Wuhan China). Proceedings of the 2008 International Symposium on Computational Intelligence and Design: October 17-18, 2008, Wuhan, China. Los Alamitos, Calif: IEEE Computer Society, 2008.
Den vollen Inhalt der Quelle findenInternational Symposium on Computational Intelligence and Design (2nd 2009 Changsha, China). Proceedings: 2009 International Symposium on Computational Intelligence and Design : Changsha, China, 12-14 December 2009. Los Alamitos, Calif: IEEE Computer Society, 2008.
Den vollen Inhalt der Quelle findenInternational Symposium on Computational Intelligence and Design (3rd 2010 Hangzhou, Zhejiang, China). Proceedings: 2010 International Symposium on Computational Intelligence and Design : ICSID 2010 : 29-31 October 2010, Hangzhou, Zhejiang, China. Los Alamitos, Calif: IEEE Computer Society, 2010.
Den vollen Inhalt der Quelle findenInternational Conference on Innovative Computing, Information and Control (1st 2006 Beijing, China). ICICIC 2006: First International Conference on Innovative Computing, Information and Control : 30 August-1 September, 2006, Beijing, China. Herausgegeben von Pan Jeng-Shyang, Shi Peng 1958-, Zhao Yao und Institute of Electrical and Electronics Engineers. Los Alamitos, Calif: IEEE Computer Society, 2006.
Den vollen Inhalt der Quelle findenTopping, B. H. Developments in Neural Networks and Evolutionary Computing for Civil and Structural Engineering. Hyperion Books, 1995.
Den vollen Inhalt der Quelle findenSemi-Empirical Neural Network Modeling and Digital Twins Development. Elsevier, 2020. http://dx.doi.org/10.1016/c2017-0-02027-x.
Der volle Inhalt der QuelleSoftware Development Outsourcing Decision Support Tool with Neural Network Learning. Storming Media, 2004.
Den vollen Inhalt der Quelle findenBuchteile zum Thema "Evolutionary development of neural network"
Cho, Sung-Bae, und Katsunori Shimohara. „Grammatical Development of Evolutionary Modular Neural Networks“. In Lecture Notes in Computer Science, 413–20. Berlin, Heidelberg: Springer Berlin Heidelberg, 1999. http://dx.doi.org/10.1007/3-540-48873-1_53.
Der volle Inhalt der QuelleShakya, S., M. Kern, G. Owusu und C. M. Chin. „Dynamic Pricing with Neural Network Demand Models and Evolutionary Algorithms“. In Research and Development in Intelligent Systems XXVII, 223–36. London: Springer London, 2010. http://dx.doi.org/10.1007/978-0-85729-130-1_16.
Der volle Inhalt der QuelleManuputty, J., P. Sen und D. Todd. „Development of an Iterative Neural Network and Genetic Algorithm Procedure for Shipyard Scheduling“. In Evolutionary Design and Manufacture, 335–42. London: Springer London, 2000. http://dx.doi.org/10.1007/978-1-4471-0519-0_27.
Der volle Inhalt der QuelleShailaja, M., und A. V. Sita Rama Raju. „Development of Back Propagation Neural Network (BPNN) Model to Predict Combustion Parameters of Diesel Engine“. In Swarm, Evolutionary, and Memetic Computing, 71–83. Cham: Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-48959-9_7.
Der volle Inhalt der QuelleBarrios, D., A. Carrascal, D. Manrique und J. Rios. „ADANNET: Automatic Design of Artificial Neural Networks by Evolutionary Techniques“. In Research and Development in Intelligent Systems XVIII, 67–80. London: Springer London, 2002. http://dx.doi.org/10.1007/978-1-4471-0119-2_6.
Der volle Inhalt der QuelleDong, Xueshi, Wenyong Dong, Yunfei Yi, Yajie Wang und Xiaosong Xu. „The Recent Developments and Comparative Analysis of Neural Network and Evolutionary Algorithms for Solving Symbolic Regression“. In Intelligent Computing Theories and Methodologies, 703–14. Cham: Springer International Publishing, 2015. http://dx.doi.org/10.1007/978-3-319-22180-9_70.
Der volle Inhalt der QuelleRocha, Miguel, Paulo Cortez und José Neves. „Evolutionary Neural Network Learning“. In Progress in Artificial Intelligence, 24–28. Berlin, Heidelberg: Springer Berlin Heidelberg, 2003. http://dx.doi.org/10.1007/978-3-540-24580-3_10.
Der volle Inhalt der QuelleMat Noor, R. A. „Recent Developments of Neural Networks in Biodiesel Applications“. In Swarm, Evolutionary, and Memetic Computing, 339–50. Cham: Springer International Publishing, 2015. http://dx.doi.org/10.1007/978-3-319-20294-5_30.
Der volle Inhalt der QuelleKhan, Gul Muhammad. „Evolutionary Computation“. In Evolution of Artificial Neural Development, 29–37. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-67466-7_3.
Der volle Inhalt der QuelleCroll, Roger P. „Neural Development in Invertebrates“. In The Wiley Handbook of Evolutionary Neuroscience, 307–49. Chichester, UK: John Wiley & Sons, Ltd, 2016. http://dx.doi.org/10.1002/9781118316757.ch11.
Der volle Inhalt der QuelleKonferenzberichte zum Thema "Evolutionary development of neural network"
Roy, Anthony M., Erik K. Antonsson und Andrew A. Shapiro. „Genetic Evolution for the Development of Robust Artificial Neural Network Logic Gates“. In ASME 2009 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference. ASMEDC, 2009. http://dx.doi.org/10.1115/detc2009-87448.
Der volle Inhalt der QuelleMiller, Julian F., und Dennis G. Wilson. „A developmental artificial neural network model for solving multiple problems“. In GECCO '17: Genetic and Evolutionary Computation Conference. New York, NY, USA: ACM, 2017. http://dx.doi.org/10.1145/3067695.3075976.
Der volle Inhalt der QuelleHuan, Tran Thien, Cao Van Kien und Ho Pham Huy Anh. „Adaptive Evolutionary Neural Network Gait Generation for Humanoid Robot Optimized with Modified Differential Evolution Algorithm“. In 2018 4th International Conference on Green Technology and Sustainable Development (GTSD). IEEE, 2018. http://dx.doi.org/10.1109/gtsd.2018.8595586.
Der volle Inhalt der QuelleLA PAZ-MARÍN, MÓNICA DE, PILAR CAMPOY-MUÑOZ und CÉSAR HERVÁS-MARTÍNEZ. „EVOLUTIONARY NEURAL NETWORK CLASSIFIERS FOR MONITORING RESEARCH, DEVELOPMENT AND INNOVATION PERFORMANCE IN EUROPEAN UNION MEMBER STATES“. In Proceedings of the XVII SIGEF Congress. WORLD SCIENTIFIC, 2012. http://dx.doi.org/10.1142/9789814415774_0021.
Der volle Inhalt der QuellePlyakin, Vladislav, und Vladislav Protasov. „Evolutionary matching method for face recognition using neural networks“. In International Conference "Computing for Physics and Technology - CPT2020". ANO «Scientific and Research Center for Information in Physics and Technique», 2020. http://dx.doi.org/10.30987/conferencearticle_5fd755bf868b47.13424079.
Der volle Inhalt der QuelleKatragadda, Ravi Teja, Sreekanth Reddy Gondipalle, Paolo Guarneri und Georges Fadel. „Predicting the Thermal Performance for the Multi-Objective Vehicle Underhood Packing Optimization Problem“. In ASME 2012 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference. American Society of Mechanical Engineers, 2012. http://dx.doi.org/10.1115/detc2012-71098.
Der volle Inhalt der QuelleWeatheritt, Jack, Richard D. Sandberg, Julia Ling, Gonzalo Saez und Julien Bodart. „A Comparative Study of Contrasting Machine Learning Frameworks Applied to RANS Modeling of Jets in Crossflow“. In ASME Turbo Expo 2017: Turbomachinery Technical Conference and Exposition. American Society of Mechanical Engineers, 2017. http://dx.doi.org/10.1115/gt2017-63403.
Der volle Inhalt der QuelleIvan, Zelinka, Senkerik Roman und Oplatkova Zuzana. „Evolutionary Scanning and Neural Network Optimization“. In 2008 19th International Conference on Database and Expert Systems Applications (DEXA). IEEE, 2008. http://dx.doi.org/10.1109/dexa.2008.84.
Der volle Inhalt der Quelle„Evolutionary Techniques for Neural Network Optimization“. In The First International Workshop on Artificial Neural Networks and Intelligent Information Processing. SciTePress - Science and and Technology Publications, 2005. http://dx.doi.org/10.5220/0001191800030011.
Der volle Inhalt der QuelleSaiki, Motohiro, und Satoshi Matsuda. „Evolutionary neural network model of universal grammar“. In 2010 International Joint Conference on Neural Networks (IJCNN). IEEE, 2010. http://dx.doi.org/10.1109/ijcnn.2010.5596735.
Der volle Inhalt der QuelleBerichte der Organisationen zum Thema "Evolutionary development of neural network"
McDonnell, J. R., W. C. Page und D. E. Waagen. Neural Network Construction Using Evolutionary Search. Fort Belvoir, VA: Defense Technical Information Center, Dezember 1994. http://dx.doi.org/10.21236/ada290862.
Der volle Inhalt der QuelleMatteucci, Matteo. ELeaRNT: Evolutionary Learning of Rich Neural Network Topologies. Fort Belvoir, VA: Defense Technical Information Center, Januar 2006. http://dx.doi.org/10.21236/ada456062.
Der volle Inhalt der QuellePatro, S., und W. J. Kolarik. Integrated evolutionary computation neural network quality controller for automated systems. Office of Scientific and Technical Information (OSTI), Juni 1999. http://dx.doi.org/10.2172/350895.
Der volle Inhalt der QuelleLeij, F. J., und M. T. Van Genuchten. Development of Pedotransfer Functions with Neural Network Models. Fort Belvoir, VA: Defense Technical Information Center, Juni 2001. http://dx.doi.org/10.21236/ada394563.
Der volle Inhalt der QuelleFox-Rabinovitz, M. S., und V. M. Krasnopolsky. Development of Ensemble Neural Network Convection Parameterizations for Climate Models. Office of Scientific and Technical Information (OSTI), Mai 2012. http://dx.doi.org/10.2172/1039344.
Der volle Inhalt der QuelleRajagopalan, A., G. Washington, G. Rizzoni und Y. Guezennec. Development of Fuzzy Logic and Neural Network Control and Advanced Emissions Modeling for Parallel Hybrid Vehicles. Office of Scientific and Technical Information (OSTI), Dezember 2003. http://dx.doi.org/10.2172/15006009.
Der volle Inhalt der QuelleRaychev, Nikolay. Can human thoughts be encoded, decoded and manipulated to achieve symbiosis of the brain and the machine. Web of Open Science, Oktober 2020. http://dx.doi.org/10.37686/nsrl.v1i2.76.
Der volle Inhalt der Quelle