Inhaltsverzeichnis
Auswahl der wissenschaftlichen Literatur zum Thema „Evolution of the archaea“
Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an
Machen Sie sich mit den Listen der aktuellen Artikel, Bücher, Dissertationen, Berichten und anderer wissenschaftlichen Quellen zum Thema "Evolution of the archaea" bekannt.
Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.
Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.
Zeitschriftenartikel zum Thema "Evolution of the archaea"
Kellner, Siri, Anja Spang, Pierre Offre, Gergely J. Szöllősi, Celine Petitjean und Tom A. Williams. „Genome size evolution in the Archaea“. Emerging Topics in Life Sciences 2, Nr. 4 (14.11.2018): 595–605. http://dx.doi.org/10.1042/etls20180021.
Der volle Inhalt der QuelleNgcobo, Phelelani Erick, Bridget Valeria Zinhle Nkosi, Wanping Chen, David R. Nelson und Khajamohiddin Syed. „Evolution of Cytochrome P450 Enzymes and Their Redox Partners in Archaea“. International Journal of Molecular Sciences 24, Nr. 4 (19.02.2023): 4161. http://dx.doi.org/10.3390/ijms24044161.
Der volle Inhalt der QuelleRafiq, Muhammad, Noor Hassan, Maliha Rehman, Muhammad Hayat, Gullasht Nadeem, Farwa Hassan, Naveed Iqbal et al. „Challenges and Approaches of Culturing the Unculturable Archaea“. Biology 12, Nr. 12 (07.12.2023): 1499. http://dx.doi.org/10.3390/biology12121499.
Der volle Inhalt der QuelleGribaldo, Simonetta, und Celine Brochier-Armanet. „The origin and evolution of Archaea: a state of the art“. Philosophical Transactions of the Royal Society B: Biological Sciences 361, Nr. 1470 (09.05.2006): 1007–22. http://dx.doi.org/10.1098/rstb.2006.1841.
Der volle Inhalt der QuelleWilliams, Tom A., Gergely J. Szöllősi, Anja Spang, Peter G. Foster, Sarah E. Heaps, Bastien Boussau, Thijs J. G. Ettema und T. Martin Embley. „Integrative modeling of gene and genome evolution roots the archaeal tree of life“. Proceedings of the National Academy of Sciences 114, Nr. 23 (22.05.2017): E4602—E4611. http://dx.doi.org/10.1073/pnas.1618463114.
Der volle Inhalt der QuelleForterre, Patrick. „The Common Ancestor of Archaea and Eukarya Was Not an Archaeon“. Archaea 2013 (2013): 1–18. http://dx.doi.org/10.1155/2013/372396.
Der volle Inhalt der QuelleVERHEES, Corné H., Servé W. M. KENGEN, Judith E. TUININGA, Gerrit J. SCHUT, Michael W. W. ADAMS, Willem M. de VOS und John van der OOST. „The unique features of glycolytic pathways in Archaea“. Biochemical Journal 375, Nr. 2 (15.10.2003): 231–46. http://dx.doi.org/10.1042/bj20021472.
Der volle Inhalt der QuelleZhu, Pengfei, Jialin Hou, Yixuan Xiong, Ruize Xie, Yinzhao Wang und Fengping Wang. „Expanded Archaeal Genomes Shed New Light on the Evolution of Isoprenoid Biosynthesis“. Microorganisms 12, Nr. 4 (30.03.2024): 707. http://dx.doi.org/10.3390/microorganisms12040707.
Der volle Inhalt der QuelleTamarit, Daniel, Eva F. Caceres, Mart Krupovic, Reindert Nijland, Laura Eme, Nicholas P. Robinson und Thijs J. G. Ettema. „A closed Candidatus Odinarchaeum chromosome exposes Asgard archaeal viruses“. Nature Microbiology 7, Nr. 7 (27.06.2022): 948–52. http://dx.doi.org/10.1038/s41564-022-01122-y.
Der volle Inhalt der QuelleFouqueau, Thomas, Fabian Blombach, Gwenny Cackett, Alice E. Carty, Dorota M. Matelska, Sapir Ofer, Simona Pilotto, Duy Khanh Phung und Finn Werner. „The cutting edge of archaeal transcription“. Emerging Topics in Life Sciences 2, Nr. 4 (14.11.2018): 517–33. http://dx.doi.org/10.1042/etls20180014.
Der volle Inhalt der QuelleDissertationen zum Thema "Evolution of the archaea"
Cossu, Matteo. „Genomic evolution of archaea thermococcales“. Thesis, Université Paris-Saclay (ComUE), 2017. http://www.theses.fr/2017SACLS028.
Der volle Inhalt der QuelleThe main goal of my PhD project is to investigate the genomic evolution of the Archaea Thermococcales order. I am interested in understanding how mobile genetic elements (MGE) can influence the evolution of genomes. Using a multidisciplinary approach, we were able to explore the different aspects of this phenomenon in silico, in vitro and in vivo. Through in silico analyses of all available completely sequenced Thermococcales genomes, we showed that this order displays a characteristic high level of rearrangements potentially disrupting gene expression patterns. In a first approach, we investigated the existence of chromosomal organization. The inefficiency in predicting origin and termination of replication on the sole basis of chromosomal DNA composition or skew, motivated us to use a different approach based on biologically relevant sequences. We determined the position of the origin of replication (oriC) in all 21 sequenced Thermococcales genomes. The potential position of the termination was predicted in 19 genomes at or near the dif site, where chromosome dimers are resolved before DNA segregation. Computation of the core genome uncovered a number of essential gene clusters with a remarkably stable chromosomal position across species, using oriC as reference. On the other hand, core-free regions appear to correspond to putative integrated mobile elements. These observations indicate that a remarkable degree of “order” has been maintained across Thermococcales even if they display highly scrambled chromosomes, with inversions being especially frequent. The discovery and characterization of a new organism, Thermococcus nautili allowed us to better understand the underlying mechanism causing these inversions. The sequencing and in silico analysis of its genome strongly suggested the involvement of a new class of tyrosine recombinases in genomic plasticity. T. nautili pTN3 plasmid, which is found integrated into the chromosome and also self-replicating encodes an integrase belonging to this class. Similar plasmids have also been found integrated in the chromosome of other sequenced Thermococcales (e.g. TKV4 in T. kodakarensis). In order to test its enzymatic activity, we overproduced and purified the integrase encoded by pTN3. In vitro experiments first determined the minimal sequence segment required for integrase activity and optimized the enzymatic reaction in vitro. Due to this early results, we were able to demonstrate the excision/integration reaction observed with other tyrosine recombinases. Additionally, the in vivo excision of a related integrated element (TKV4 from T. kodakarensis) by the pTN3 integrase was performed during this study. The IntpTN3 gene has been cloned into an E. coli/Thermococcus shuttle vector for transformation and expression in T. kodakarensis. After incubation, cells showed the presence of the TKV4-integrated element in free circular form. Finally, we were able to mimic in vitro chromosomal inversion using synthetic substrates containing integration target sequences. We were also able to show that pTN3 integrase possesses an activity which can mediate large scale genomic inversions using different sites and therefore explain the rearrangements observed in Thermococcales)
Aouad, Monique. „Phylogenomic study of the evolutionary history of the Archaea and their link with eukaryogenesis“. Thesis, Lyon, 2018. http://www.theses.fr/2018LYSE1246.
Der volle Inhalt der QuelleThe burst of sequencing data has helped disentangling most of the phylogenetic relationships in Archaea. Nevertheless, many questions remain to be addressed both at the level of the archaeal domain and at the level of the three domains of life. Among them, the phylogenetic relationships inside the cluster II, in particular the position of extreme halophilic archaeal lineages relatively to the methanogens which have been placed at different positions in the tree based on the different markers and reconstruction models used, as well as the position of the root of the Archaea and the position of the eukaryotes in the light of the newly sequenced archaeal lineages. During my thesis, I have contributed to (i) refine the phylogeny of the archaeal domain by focusing on the phylogenetic relationships among the cluster II Archaea, in particular the positions of the extreme halophilic lineages through dedicated analyses focusing on this specific part of the archaeal tree, and (ii) establish a global phylogeny of the Archaea to understand their early evolutionary history and their link with the eukaryotes through a large-scale two-step phylogenomic analysis at the level of the three domains of life. First, using comparative genomics approaches on 155 complete genomes belonging to the Halobacteria, Nanohaloarchaea, methanogens class II, Archaeoglobales, and Diaforarchaea, I have identified 258 proteins carrying a reliable phylogenetic signal to investigate the position of the extreme halophilic lineages in Archaea. By combining different approaches limiting the impact of non-phylogenetic signal on phylogenetic inference (like the Slow Fast method and the recoding of amino acids), I showed that the Nanohaloarchaea branch with Methanocellales, and Halobacteria branch with Methanomicrobiales. This dataset has been subsequently used to investigate the position of a third extreme halophilic lineage, the Methanonatronarchaeia, which I showed to branch in between the Archaeoglobales and Diaforarchaea. These results suggest that adaption to high salinity emerged at least three times independently in Archaea, and that the phenotypic similarities observed in Nanohaloarchaea, Halobacteria, and Methanonatronarchaeia likely result from convergent evolution, possibly accompanied by horizontal gene transfers. Finally, these results suggest that the basal grouping of Nanohaloarchaea with other DPANN lineages is likely the consequence of a tree reconstruction artefact. For the second part of my thesis, I have applied a strategy consisting in separately analyzing the three domains of life two by two, by updating 72 protein families previously identified by Raymann and colleagues (2015) to include all novel archaeal lineages that were sequenced since the publication of this study like the Asgard, the DPANN, the Stygia, the Acherontia, etc. In total, my taxonomic sampling includes 435 archaea, 18 eukaryotes, and 67 bacteria. The results of the Slow-Fast method supported a root of the Archaea lying between a basal DPANN superphylum and the rest of the Archaea separated into two monophyletic groups: the cluster I and cluster II as described by Raymann and colleagues (2015), and showed that the monophyly of the Euryarchaeota is supported only by the fast-evolving sites. My results also placed the eukaryotes as the sister group to the TACK superphylum and showed that their sister grouping with the Asgard is linked to the fast-evolving sites. These results have major implications on the inferences of the nature of the last common archaeal ancestor and the subsequent evolutionary history of this domain that led to the rise of the first eukaryotic cell
Berthon, Jonathan. „Etude de la réplication de l'ADN chez les Archaea“. Phd thesis, Université Paris Sud - Paris XI, 2008. http://tel.archives-ouvertes.fr/tel-00344124.
Der volle Inhalt der QuellePremièrement, j'ai essayé de purifier la protéine initiatrice de la réplication Cdc6/Orc1, sous une forme native, dans l'espoir de mettre au point le premier système de réplication de l'ADN in vitro chez les Archaea. Malheureusement, cette approche a été infructueuse en raison de l'instabilité et des propriétés d'agrégation de la protéine.
Deuxièmement, j'ai réalisé une analyse comparative du contexte génomique des gènes de réplication dans les génomes d'Archaea. Cette analyse nous a permis d'identifier une association très conservée entre des gènes de la réplication et des gènes liés au ribosome. Cette organisation suggère l'existence d'un mécanisme de couplage entre la réplication de l'ADN et la traduction. De manière remarquable, des données expérimentales obtenues chez des modèles bactériens et eucaryotes appuient cette idée. J'ai ensuite mis au point des outils expérimentaux qui permettront d'éprouver la pertinence biologique de certaines des prédictions effectuées.
Finalement, j'ai examiné la distribution taxonomique des gènes de la réplication dans les génomes d'Archaea afin de prédire la composition probable de la machinerie de réplication de l'ADN chez le dernier ancêtre commun des Archaea. Dans leur ensemble, les profils phylétiques des gènes de la réplication suggèrent que la machinerie ancestrale était plus complexe que celle des organismes archéens contemporains.
Petitjean, Celine. „Phylogénie et évolution des Archaea, une approche phylogénomique“. Phd thesis, Université Paris Sud - Paris XI, 2013. http://tel.archives-ouvertes.fr/tel-01070633.
Der volle Inhalt der QuelleHepp, Benjamin. „Characterization of IntpTN3 : A suicidal integrase capable of in vitro homologous recombination“. Electronic Thesis or Diss., université Paris-Saclay, 2023. http://www.theses.fr/2023UPASL151.
Der volle Inhalt der QuelleHyperthermophilic organisms are microorganisms that thrive optimally at temperatures of 85°C or higher. They are commonly found in extreme environments such as hot springs, oil wells, and oceanic trenches near hydrothermal vents, such as black smokers. These organisms have emerged as valuable resources for biotechnological applications due to their production of thermostable enzymes, including polymerases used in PCR (Polymerase Chain Reaction) and enzymes employed in the detergent industry for breaking down biomolecules at high temperatures. Within the hyperthermophilic archaea Thermococcus nautili, we have discovered an enzyme capable of catalyzing DNA recombination with virtually any DNA molecule. This enzyme holds immense potential as a robust biotechnological tool for researchers, enabling the in vitro assembly of DNA molecules and facilitating DNA modification processes. These promising findings have led us to file an invention disclosure statement for our enzyme, recognizing its significant value in advancing molecular biology and genetic engineering
Li, Jun, und 李俊. „Molecular evolution and phylogeny of methanogenic archael genomes“. Thesis, The University of Hong Kong (Pokfulam, Hong Kong), 2014. http://hdl.handle.net/10722/208152.
Der volle Inhalt der Quellepublished_or_final_version
Biological Sciences
Doctoral
Doctor of Philosophy
Archibald, John M. „Studies on the evolution of archaeal and eukaryotic chaperonins“. Thesis, National Library of Canada = Bibliothèque nationale du Canada, 2001. http://www.collectionscanada.ca/obj/s4/f2/dsk3/ftp05/NQ66656.pdf.
Der volle Inhalt der QuelleRobertson, S. „Late Archaean crustal evolution in the Ivisartoq region, southern west Greenland“. Thesis, University of Exeter, 1985. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.353048.
Der volle Inhalt der QuelleDougherty-Page, Jon Stanley. „The evolution of the Archaean continental crust of Northern Zimbabwe“. Thesis, Open University, 1994. http://oro.open.ac.uk/54877/.
Der volle Inhalt der QuelleTicak, Tomislav. „Anoxic quaternary amine utilization by archaea and bacteria through a non-L-pyrrolysine methyltransferase; insights into global ecology, human health, and evolution of anaerobic systems“. Miami University / OhioLINK, 2015. http://rave.ohiolink.edu/etdc/view?acc_num=miami1429897518.
Der volle Inhalt der QuelleBücher zum Thema "Evolution of the archaea"
1943-, Garrett Roger A., und Klenk Hans-Peter, Hrsg. Archaea: Evolution, physiology, and molecular biology. Malden, MA: Blackwell Pub., 2007.
Den vollen Inhalt der Quelle findenKurup, Ravikumar, und Parameswaran Achutha Kurup. The third element: Actinidic archaea, digoxin, and the biological universe. Hauppauge, N.Y: Nova Science Publishers, 2011.
Den vollen Inhalt der Quelle findenC, Condie Kent, Hrsg. Archean crustal evolution. Amsterdam: Elsevier, 1994.
Den vollen Inhalt der Quelle findenD, Ayres L., Hrsg. Evolution of Archean supracrustal sequences. [St. John, Nfld.]: Geological Association of Canada, 1985.
Den vollen Inhalt der Quelle findenDilek, Yildirim, und Harald Furnes, Hrsg. Evolution of Archean Crust and Early Life. Dordrecht: Springer Netherlands, 2014. http://dx.doi.org/10.1007/978-94-007-7615-9.
Der volle Inhalt der QuelleHickman, Arthur H. Archean Evolution of the Pilbara Craton and Fortescue Basin. Cham: Springer International Publishing, 2023. http://dx.doi.org/10.1007/978-3-031-18007-1.
Der volle Inhalt der QuelleCavicchioli, Ricardo, Hrsg. Archaea. Washington, DC, USA: ASM Press, 2007. http://dx.doi.org/10.1128/9781555815516.
Der volle Inhalt der QuelleFerreira-Cerca, Sébastien, Hrsg. Archaea. New York, NY: Springer US, 2022. http://dx.doi.org/10.1007/978-1-0716-2445-6.
Der volle Inhalt der QuelleGarrett, Roger A., und Hans-Peter Klenk, Hrsg. Archaea. Malden, MA, USA: Blackwell Publishing Ltd, 2006. http://dx.doi.org/10.1002/9780470750865.
Der volle Inhalt der QuelleMargulis, Lynn. Symbiosis in cell evolution: Microbial communities in the Archean and Proterozoic eons. 2. Aufl. New York: Freeman, 1993.
Den vollen Inhalt der Quelle findenBuchteile zum Thema "Evolution of the archaea"
Boucher, Yan. „Lipids: Biosynthesis, Function, and Evolution“. In Archaea, 341–53. Washington, DC, USA: ASM Press, 2014. http://dx.doi.org/10.1128/9781555815516.ch15.
Der volle Inhalt der QuelleForterre, Patrick, Yvan Zivanovic und Simonetta Gribaldo. „Structure and Evolution of Genomes“. In Archaea, 411–33. Washington, DC, USA: ASM Press, 2014. http://dx.doi.org/10.1128/9781555815516.ch19.
Der volle Inhalt der QuelleWoese, Carl R. „The Archaea: an Invitation to Evolution†“. In Archaea, 1–13. Washington, DC, USA: ASM Press, 2014. http://dx.doi.org/10.1128/9781555815516.ch1.
Der volle Inhalt der QuelleGrogan, Dennis W. „Mechanisms of Genome Stability and Evolution†“. In Archaea, 120–38. Washington, DC, USA: ASM Press, 2014. http://dx.doi.org/10.1128/9781555815516.ch5.
Der volle Inhalt der QuelleGil, Rosario, Amparo Latorre und Andrés Moya. „Evolution of Prokaryote-Animal Endosymbiosis from a Genomics Perspective“. In (Endo)symbiotic Methanogenic Archaea, 223–55. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-98836-8_11.
Der volle Inhalt der QuelleGil, Rosario, Amparo Latorre und Andrés Moya. „Evolution of Prokaryote-Animal Symbiosis from a Genomics Perspective“. In (Endo)symbiotic Methanogenic Archaea, 207–33. Berlin, Heidelberg: Springer Berlin Heidelberg, 2010. http://dx.doi.org/10.1007/978-3-642-13615-3_11.
Der volle Inhalt der QuelleSpradlin, Savannah, Lori Cobani, Christian Brininger und Caryn Evilia. „Archaea Were Trailblazers in Signaling Evolution: Protein Adaptation and Structural Fluidity as a Form of Intracellular Communication“. In Biocommunication of Archaea, 195–211. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-65536-9_12.
Der volle Inhalt der QuelleFrye, Roy A. „Evolution of Sirtuins From Archaea to Vertebrates“. In Histone Deacetylases, 183–202. Totowa, NJ: Humana Press, 2006. http://dx.doi.org/10.1385/1-59745-024-3:183.
Der volle Inhalt der QuelleBertrand, Jean-Claude, Pierre Caumette, Philippe Normand, Bernard Ollivier und Télesphore Sime-Ngando. „Prokaryote/Eukaryote Dichotomy and Bacteria/Archaea/Eukarya Domains: Two Inseparable Concepts“. In Prokaryotes and Evolution, 1–21. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-99784-1_1.
Der volle Inhalt der QuelleTripp, Vanessa, und Lennart Randau. „Evolution of C/D Box sRNAs“. In RNA Metabolism and Gene Expression in Archaea, 201–24. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-65795-0_9.
Der volle Inhalt der QuelleKonferenzberichte zum Thema "Evolution of the archaea"
Pikuta, Elena V., Dragana Tankosic und Rob Sheldon. „Evolution of Archaea in 3D modeling“. In SPIE Optical Engineering + Applications, herausgegeben von Richard B. Hoover, Gilbert V. Levin und Alexei Y. Rozanov. SPIE, 2012. http://dx.doi.org/10.1117/12.929945.
Der volle Inhalt der QuelleJain, Prem. „Architecture evolution and evaluation (ArchEE) capability“. In 2011 6th International Conference on System of Systems Engineering (SoSE). IEEE, 2011. http://dx.doi.org/10.1109/sysose.2011.5966581.
Der volle Inhalt der QuelleRaju, Perumala, und Rajat Mazumder. „THE GEOLOGICAL EVOLUTION OF THE ARCHEAN DHARWAR-CRATON“. In GSA Connects 2021 in Portland, Oregon. Geological Society of America, 2021. http://dx.doi.org/10.1130/abs/2021am-364281.
Der volle Inhalt der QuelleZhao, S., L. Zhou, X. Sun, Z. Gao, Y. Zhou, N. Wang, Y. Wang, J. Chen, L. Xing und R. Bao. „Temperature Controls on Dynamics and Evolution of Archaeal Lipid Distribution“. In IMOG 2023. European Association of Geoscientists & Engineers, 2023. http://dx.doi.org/10.3997/2214-4609.202333092.
Der volle Inhalt der QuelleDurgalakshmi, Durgalakshmi, Ian Williams und Sajeev Krishnan. „Petrogenesis and evolution of charnockites formed at the Archaean-Proterozoic boundary“. In Goldschmidt2022. France: European Association of Geochemistry, 2022. http://dx.doi.org/10.46427/gold2022.9850.
Der volle Inhalt der QuelleBrown, Michael, Christopher L. Kirkland, Tim E. Johnson und Phil Sutton. „GIANT IMPACTS AND THE ORIGIN AND EVOLUTION OF ARCHEAN CRATONS“. In GSA Connects 2023 Meeting in Pittsburgh, Pennsylvania. Geological Society of America, 2023. http://dx.doi.org/10.1130/abs/2023am-391877.
Der volle Inhalt der QuelleBrown, Michael, Christopher Kirkland, Tim Johnson und Phil Sutton. „Giant impacts and the origin and evolution of Archean cratons“. In Goldschmidt2023. France: European Association of Geochemistry, 2023. http://dx.doi.org/10.7185/gold2023.16192.
Der volle Inhalt der QuelleGillespie, Jack, Pete Kinny, Chris Kirkland, Laure Martin, Alexander Nemchin, Aaron J. Cavosie und Derrick Hasterok. „Isotopic modelling of Archean crustal evolution from comagmatic zircon--apatite pairs“. In Goldschmidt2021. France: European Association of Geochemistry, 2021. http://dx.doi.org/10.7185/gold2021.5488.
Der volle Inhalt der QuelleFenu, Luigi, und Giuseppe C. Marano. „Steel Truss-Type Arches Optimization Under Multi-Load Cases“. In IABSE Congress, New York, New York 2019: The Evolving Metropolis. Zurich, Switzerland: International Association for Bridge and Structural Engineering (IABSE), 2019. http://dx.doi.org/10.2749/newyork.2019.1338.
Der volle Inhalt der QuelleMenon, Swathi Sivakumar, und Vinod Balakrishnan. „Language Evolution: An NCT and Conlang Framework“. In GLOCAL Conference on Asian Linguistic Anthropology 2022. The GLOCAL Unit, SOAS University of London, 2023. http://dx.doi.org/10.47298/cala2022.7-4.
Der volle Inhalt der QuelleBerichte der Organisationen zum Thema "Evolution of the archaea"
Skulski, T., J. A. Percival und R. A. Stern. Archean crustal evolution in the central Minto block, northern Quebec. Natural Resources Canada/ESS/Scientific and Technical Publishing Services, 1996. http://dx.doi.org/10.4095/207760.
Der volle Inhalt der QuelleLucas, S. B., und M. R. St-Onge. Evolution of Archean and Early Proterozoic Magmatic Arcs in northeastern Ungava Peninsula, Quebec. Natural Resources Canada/ESS/Scientific and Technical Publishing Services, 1991. http://dx.doi.org/10.4095/132566.
Der volle Inhalt der QuelleGregersen, U., P. C. Knutz, G. K. Pedersen, H. Nøhr-Hansen, J. R. Ineson, L. M. Larsen, J R Hopper et al. Stratigraphy of the West Greenland Margin. Natural Resources Canada/CMSS/Information Management, 2022. http://dx.doi.org/10.4095/321849.
Der volle Inhalt der QuelleTrent, J. D., H. K. Kagawa und N. J. Zaluzec. Chaperonin polymers in archaea: The cytoskeleton of prokaryotes? Office of Scientific and Technical Information (OSTI), Juli 1997. http://dx.doi.org/10.2172/505321.
Der volle Inhalt der QuelleKelly, R. M. Bioenergetic and physiological studies of hyperthermophilic archaea. Final report. Office of Scientific and Technical Information (OSTI), März 1999. http://dx.doi.org/10.2172/325744.
Der volle Inhalt der QuelleDavis, W. J., J. J. Ryan, H. A. Sandeman und S. Tella. A Paleoproterozoic detrital zircon age for a key conglomeratic horizon within the Rankin Inlet area, Kivalliq Region, Nunavut: implications for Archean and Proterozoic evolution of the area. Natural Resources Canada/ESS/Scientific and Technical Publishing Services, 2008. http://dx.doi.org/10.4095/225479.
Der volle Inhalt der QuelleSchuster, Gadi, und David Stern. Integration of phosphorus and chloroplast mRNA metabolism through regulated ribonucleases. United States Department of Agriculture, August 2008. http://dx.doi.org/10.32747/2008.7695859.bard.
Der volle Inhalt der QuelleLuthey-Schulten, Zaida. Computational Modeling of Fluctuations in Energy and Metabolic Pathways of Methanogenic Archaea. Office of Scientific and Technical Information (OSTI), Januar 2017. http://dx.doi.org/10.2172/1337955.
Der volle Inhalt der QuelleEichler, Jerry. Protein Glycosylation in Archaea: A Post-Translational Modification to Enhance Extremophilic Protein Stability. Fort Belvoir, VA: Defense Technical Information Center, Januar 2010. http://dx.doi.org/10.21236/ada515568.
Der volle Inhalt der QuelleMartin, Maurice. Grid Evolution and Attack Evolution. Office of Scientific and Technical Information (OSTI), April 2018. http://dx.doi.org/10.2172/1434234.
Der volle Inhalt der Quelle