Inhaltsverzeichnis
Auswahl der wissenschaftlichen Literatur zum Thema „Evolution and diversity across photosynthetic organisms“
Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an
Machen Sie sich mit den Listen der aktuellen Artikel, Bücher, Dissertationen, Berichten und anderer wissenschaftlichen Quellen zum Thema "Evolution and diversity across photosynthetic organisms" bekannt.
Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.
Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.
Zeitschriftenartikel zum Thema "Evolution and diversity across photosynthetic organisms"
Przytulska, A., J. Comte, S. Crevecoeur, C. Lovejoy, I. Laurion und W. F. Vincent. „Phototrophic pigment diversity and picophytoplankton in permafrost thaw lakes“. Biogeosciences 13, Nr. 1 (14.01.2016): 13–26. http://dx.doi.org/10.5194/bg-13-13-2016.
Der volle Inhalt der QuellePrzytulska, A., J. Comte, S. Crevecoeur, C. Lovejoy, I. Laurion und W. F. Vincent. „Phototrophic pigment diversity and picophytoplankton abundance in permafrost thaw lakes“. Biogeosciences Discussions 12, Nr. 15 (04.08.2015): 12121–56. http://dx.doi.org/10.5194/bgd-12-12121-2015.
Der volle Inhalt der QuelleCouturier, Jérémy, Jean-Pierre Jacquot und Nicolas Rouhier. „Evolution and diversity of glutaredoxins in photosynthetic organisms“. Cellular and Molecular Life Sciences 66, Nr. 15 (09.06.2009): 2539–57. http://dx.doi.org/10.1007/s00018-009-0054-y.
Der volle Inhalt der QuelleWardley, William P., Johannes W. Goessling und Martin Lopez-Garcia. „Measuring Photonics in Photosynthesis: Combined Micro-Fourier Image Spectroscopy and Pulse Amplitude Modulated Chlorophyll Fluorimetry at the Micrometre-Scale“. Biomimetics 7, Nr. 3 (07.08.2022): 107. http://dx.doi.org/10.3390/biomimetics7030107.
Der volle Inhalt der QuelleBag, Pushan. „Light Harvesting in Fluctuating Environments: Evolution and Function of Antenna Proteins across Photosynthetic Lineage“. Plants 10, Nr. 6 (10.06.2021): 1184. http://dx.doi.org/10.3390/plants10061184.
Der volle Inhalt der QuelleGabaldón, Toni. „Peroxisome diversity and evolution“. Philosophical Transactions of the Royal Society B: Biological Sciences 365, Nr. 1541 (12.03.2010): 765–73. http://dx.doi.org/10.1098/rstb.2009.0240.
Der volle Inhalt der QuelleWard, Lewis M., und Patrick M. Shih. „Granick revisited: Synthesizing evolutionary and ecological evidence for the late origin of bacteriochlorophyll via ghost lineages and horizontal gene transfer“. PLOS ONE 16, Nr. 1 (28.01.2021): e0239248. http://dx.doi.org/10.1371/journal.pone.0239248.
Der volle Inhalt der QuelleSjöqvist, Conny. „Evolution of Phytoplankton as Estimated from Genetic Diversity“. Journal of Marine Science and Engineering 10, Nr. 4 (24.03.2022): 456. http://dx.doi.org/10.3390/jmse10040456.
Der volle Inhalt der QuelleVöcking, Oliver, Aide Macias-Muñoz, Stuart J. Jaeger und Todd H. Oakley. „Deep Diversity: Extensive Variation in the Components of Complex Visual Systems across Animals“. Cells 11, Nr. 24 (08.12.2022): 3966. http://dx.doi.org/10.3390/cells11243966.
Der volle Inhalt der QuelleHernández, Greco, Christopher G. Proud, Thomas Preiss und Armen Parsyan. „On the Diversification of the Translation Apparatus across Eukaryotes“. Comparative and Functional Genomics 2012 (2012): 1–14. http://dx.doi.org/10.1155/2012/256848.
Der volle Inhalt der QuelleDissertationen zum Thema "Evolution and diversity across photosynthetic organisms"
Cattelin, Céline. „Exploration de la diversité des protéines à solénoïdes alpha, régulatrices de l'expression des gènes des organites dans les lignées eucaryotes photosynthétiques et étude de la dynamique conformationnelle des protéines à "PentatricoPeptide Repeats"“. Electronic Thesis or Diss., Sorbonne université, 2023. http://www.theses.fr/2023SORUS158.
Der volle Inhalt der QuelleIn Archaeplastida (photosynthetic eukaryotes that acquired a chloroplast following endosymbiosis with an ancestral cyanobacterium) the chloroplast and mitochondrial genomes of green algae and land plants are regulated post-transcriptionally, mainly by alpha-solenoid proteins encoded in the nucleus. These nuclear factors are composed of degenerate repeat motifs (PPR and OPR proteins, respectively pentatricopeptide repeat and octatricopeptide repeats) that interact specifically with part of their target RNA sequence and form large families of paralogs. PPR proteins are very abundant in terrestrial plants while OPRs are abundant in green algae. These differential expansions, in parallel with the evolution of RNA metabolism in organelles, may reflect genetic adaptations that preserve phototrophy under different conditions and ecological niches. In other Archaeplastids (red algae and Glaucophytes) and in eukaryotes that originate from endosymbiosis with an ancestral microalga such as the Diatoms, the regulation of organelle genomes remains poorly explored. A first objective of my thesis was to describe the diversity and evolutionary dynamics of known or candidate alpha-solenoid proteins for the regulation of organelle genome expression in all photosynthetic eukaryotes. To identify them, I developed an approach that combines distant sequence homology detection and sequence similarity independent classification. I validated this approach by finding and completing the known OPR and PPR families in the model species Chlamydomonas reinhardtii and Arabidopsis thaliana. I showed that OPR expansions were restricted within Chlorophytes and that outside of green algae and land plants, PPR and OPR proteins were few in number, suggesting that other players in the regulation of organelle genome expression remain to be discovered. I also identified several dozen other families of organelle-addressed alpha-solenoid proteins in all the proteomes studied, some of which have as yet unknown functions and whose experimental characterisation in model organisms would be relevant. In a second step, I used molecular dynamics approaches to better understand the affinity and specificity of binding between PPRs and their target RNAs. In particular, I studied the dynamics of the repeat motifs and the geometry of the nucleotide binding sites as a function of their position in the PPR motif sequence, including the effects of the number of repeats and the presence or absence of N- and C-terminal domains, in addition to the evolution of the overall conformation of the protein. Our results suggest the role of PPR protein flexibility, both at the protein and motif level, in binding to its RNA target and its relevance to the affinity and specificity of nucleotide recognition
Bücher zum Thema "Evolution and diversity across photosynthetic organisms"
Kirchman, David L. Predation and protists. Oxford University Press, 2018. http://dx.doi.org/10.1093/oso/9780198789406.003.0009.
Der volle Inhalt der QuelleBuchteile zum Thema "Evolution and diversity across photosynthetic organisms"
Rogers, John J. W., und M. Santosh. „Effects of Continents and Supercontinents on Organic Evolution“. In Continents and Supercontinents. Oxford University Press, 2004. http://dx.doi.org/10.1093/oso/9780195165890.003.0014.
Der volle Inhalt der QuelleArnold, A. Elizabeth, und Leslie C. Lewis. „Ecology and Evolution of Fungal Endophytes and Their Roles against Insects“. In Insect-Fungal Associations Ecology and Evolution, 74–96. Oxford University PressNew York, NY, 2005. http://dx.doi.org/10.1093/oso/9780195166521.003.0004.
Der volle Inhalt der QuelleMayhew, Peter J. „Traits, invariants, and theories of everything“. In Discovering Evolutionary Ecology, 37–50. Oxford University PressOxford, 2006. http://dx.doi.org/10.1093/oso/9780198570608.003.0004.
Der volle Inhalt der QuelleDewitt, Thomas J., und R. Brian Langerhans. „Integrated Solutions to Environmental Heterogeneity: Theory of Multimoment Reaction Norms“. In Phenotypic Plasticity, 98–111. Oxford University PressNew York, NY, 2004. http://dx.doi.org/10.1093/oso/9780195138962.003.0007.
Der volle Inhalt der QuelleMitchell, William A., und Burt P. Kotler. „Species Diversity, Environmental Heterogeneity, and Species Interactions“. In Biodiversity in Drylands. Oxford University Press, 2005. http://dx.doi.org/10.1093/oso/9780195139853.003.0009.
Der volle Inhalt der QuelleLynch, Michael R. „The Cellular Environment“. In Evolutionary Cell Biology, 145–67. Oxford University PressOxford, 2024. http://dx.doi.org/10.1093/oso/9780192847287.003.0007.
Der volle Inhalt der QuelleSuryanarayanan, Sainath. „On an Economic Treadmill of Agriculture: Efforts to Resolve Pollinator Decline“. In Controversies in Science and Technology. Oxford University Press, 2014. http://dx.doi.org/10.1093/oso/9780199383771.003.0024.
Der volle Inhalt der QuellePanksepp, Jaak. „Affective Neuroscience History and Major Concepts“. In Affective Neuroscience, 9–23. Oxford University PressNew York, NY, 1998. http://dx.doi.org/10.1093/oso/9780195096736.003.0001.
Der volle Inhalt der QuelleBerichte der Organisationen zum Thema "Evolution and diversity across photosynthetic organisms"
Iudicone, Daniele, und Marina Montresor. Omics community protocols. EuroSea, 2023. http://dx.doi.org/10.3289/eurosea_d3.19.
Der volle Inhalt der Quelle