Inhaltsverzeichnis
Auswahl der wissenschaftlichen Literatur zum Thema „Eukaryotic plasmid“
Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an
Machen Sie sich mit den Listen der aktuellen Artikel, Bücher, Dissertationen, Berichten und anderer wissenschaftlichen Quellen zum Thema "Eukaryotic plasmid" bekannt.
Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.
Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.
Zeitschriftenartikel zum Thema "Eukaryotic plasmid"
Jankowski, Jacek M., Eva Walczyk und Gordon H. Dixon. „Functional prokaryotic gene control signals within a eukaryotic rainbow trout protamine promoter“. Bioscience Reports 5, Nr. 6 (01.06.1985): 453–61. http://dx.doi.org/10.1007/bf01116942.
Der volle Inhalt der QuelleMøller-Jensen, Jakob, und Kenn Gerdes. „Plasmid segregation: spatial awareness at the molecular level“. Journal of Cell Biology 179, Nr. 5 (26.11.2007): 813–15. http://dx.doi.org/10.1083/jcb.200710192.
Der volle Inhalt der QuelleSoler, Nicolas, Marie Gaudin, Evelyne Marguet und Patrick Forterre. „Plasmids, viruses and virus-like membrane vesicles from Thermococcales“. Biochemical Society Transactions 39, Nr. 1 (19.01.2011): 36–44. http://dx.doi.org/10.1042/bst0390036.
Der volle Inhalt der QuelleVernis, Laurence, Marion Chasles, Philippe Pasero, Andrée Lepingle, Claude Gaillardin und Philippe Fournier. „Short DNA Fragments without Sequence Similarity Are Initiation Sites for Replication in the Chromosome of the YeastYarrowia lipolytica“. Molecular Biology of the Cell 10, Nr. 3 (März 1999): 757–69. http://dx.doi.org/10.1091/mbc.10.3.757.
Der volle Inhalt der QuelleCapozzo, Alejandra V. E., Virginia Pistone Creydt, Graciela Dran, Gabriela Fernández, Sonia Gómez, Leticia V. Bentancor, Carolina Rubel, Cristina Ibarra, Martín Isturiz und Marina S. Palermo. „Development of DNA Vaccines against Hemolytic-Uremic Syndrome in a Murine Model“. Infection and Immunity 71, Nr. 7 (Juli 2003): 3971–78. http://dx.doi.org/10.1128/iai.71.7.3971-3978.2003.
Der volle Inhalt der QuelleLiu, Binbo, Shengwu Liu, Xueju Qu und Junyan Liu. „Construction of a eukaryotic expression system for granulysin and its protective effect in mice infected with Mycobacterium tuberculosis“. Journal of Medical Microbiology 55, Nr. 10 (01.10.2006): 1389–93. http://dx.doi.org/10.1099/jmm.0.46706-0.
Der volle Inhalt der QuelleXiao, Shan, Yanping Wang, Yuwen Ma, Jue Liu, Can’e Tang, Aiping Deng und Chunxiang Fang. „Dimethylation of eEF1A at Lysine 55 Plays a Key Role in the Regulation of eEF1A2 on Malignant Cell Functions of Acute Myeloid Leukemia“. Technology in Cancer Research & Treatment 19 (01.01.2020): 153303382091429. http://dx.doi.org/10.1177/1533033820914295.
Der volle Inhalt der QuelleMa, Chien-Hui, Deepanshu Kumar, Makkuni Jayaram, Santanu K. Ghosh und Vishwanath R. Iyer. „The selfish yeast plasmid exploits a SWI/SNF-type chromatin remodeling complex for hitchhiking on chromosomes and ensuring high-fidelity propagation“. PLOS Genetics 19, Nr. 10 (09.10.2023): e1010986. http://dx.doi.org/10.1371/journal.pgen.1010986.
Der volle Inhalt der QuelleLuo, Ben-yan, Xiang-ming Chen, Min Tang, Feng Chen und Zhi Chen. „Construction of a eukaryotic expression plasmid of Humanin“. Journal of Zhejiang University SCIENCE 6B, Nr. 1 (Januar 2005): 11–13. http://dx.doi.org/10.1631/jzus.2005.b0011.
Der volle Inhalt der QuelleBao, G. Y., K. Y. Lu, S. F. Cui und L. Xu. „DKK1 eukaryotic expression plasmid and expression product identification“. Genetics and Molecular Research 14, Nr. 2 (2015): 6312–18. http://dx.doi.org/10.4238/2015.june.11.5.
Der volle Inhalt der QuelleDissertationen zum Thema "Eukaryotic plasmid"
Yull, Fiona Elizabeth. „Replication and regulation of the 2 micron plasmid of yeast“. Thesis, University of Oxford, 1989. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.253479.
Der volle Inhalt der QuelleHasan, Uzma Ayesha. „Construction, characterization and humoral responses to eukaryotic plasmid expressing the VZV qE antigen“. Thesis, Queen Mary, University of London, 2000. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.322810.
Der volle Inhalt der QuelleMills, Anthony David. „The use of a plasmid maintenance system to control eukaryotic cell survival and proliferation“. Thesis, University of Cambridge, 2003. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.619947.
Der volle Inhalt der QuelleGirard, Fabien. „Tethering of molecular parasites on inactive chromatin in eukaryote nucleus“. Electronic Thesis or Diss., Sorbonne université, 2023. http://www.theses.fr/2023SORUS661.
Der volle Inhalt der QuelleNatural plasmids are common in prokaryotes but few have been documented in eukaryotes. The natural 2µ plasmid present in budding yeast Saccharomyces cerevisiae is one of the most well characterized. This highly stable genetic element coexists with its host for millions of years, efficiently segregating at each cell division through a mechanism that remains poorly understood. Using proximity ligation (Hi-C, MicroC) to map the contacts between the 2µ and yeast chromosomes under dozens of different biological conditions, we found that the plasmid tether preferentially on regions with low transcriptional activity, often corresponding to long inactive genes, throughout the cell cycle. Common players in chromosome structure such as members of the structural maintenance of chromosome complexes (SMC) are not involved in these contacts, and depend instead on a nucleosomal signal associated with a depletion of RNA Pol II. These contacts are highly stable, and can be established within minutes. Our data show that the plasmid segregates by binding to transcriptionally silent regions of the host chromosomes. This strategy may concern other types of DNA molecules and species beyond S. cerevisiae, as suggested by the binding pattern of the natural Ddp5 plasmid along Dictyostelium discoideum chromosomes’ silent regions
Drechsler, Carina [Verfasser], Heiko [Akademischer Betreuer] Heerklotz und Rolf [Akademischer Betreuer] Schubert. „Phosphatidylserine asymmetric vesicles as eukaryotic plasma membrane model“. Freiburg : Universität, 2018. http://d-nb.info/1175378763/34.
Der volle Inhalt der QuelleFerrell, James R. „"Effects of nonthermal plasma on prokaryotic and eukaryotic cells"“. Kent State University / OhioLINK, 2013. http://rave.ohiolink.edu/etdc/view?acc_num=kent1365781078.
Der volle Inhalt der QuellePonce, Toledo Rafael Isaac. „Origins and early evolution of photosynthetic eukaryotes“. Thesis, Université Paris-Saclay (ComUE), 2018. http://www.theses.fr/2018SACLS047/document.
Der volle Inhalt der QuellePrimary plastids derive from a cyanobacterium that entered into an endosymbioticrelationship with a eukaryotic host. This event gave rise to the supergroup Archaeplastida whichcomprises Viridiplantae (green algae and land plants), Rhodophyta (red algae) and Glaucophyta. Afterprimary endosymbiosis, red and green algae spread the ability to photosynthesize to other eukaryoticlineages via secondary endosymbioses. Although considerable progress has been made in theunderstanding of the evolution of photosynthetic eukaryotes, important questions remained debatedsuch as the present-day closest cyanobacterial lineage to primary plastids as well as the number andidentity of partners in secondary endosymbioses.The main objectives of my PhD were to study the origin and evolution of plastid-bearing eukaryotesusing phylogenetic and phylogenomic approaches to shed some light on how primary and secondaryendosymbioses occurred. In this work, I show that primary plastids evolved from a close relative ofGloeomargarita lithophora, a recently sequenced early-branching cyanobacterium that has been onlydetected in terrestrial environments. This result provide interesting hints on the ecological setting whereprimary endosymbiosis likely took place. Regarding the evolution of eukaryotic lineages with secondaryplastids, I show that the nuclear genomes of chlorarachniophytes and euglenids, two photosyntheticlineages with green alga-derived plastids, encode for a large number of genes acquired by transfersfrom red algae. Finally, I highlight that SELMA, the translocation machinery putatively used to importproteins across the second outermost membrane of secondary red plastids with four membranes, has asurprisingly complex history with strong evolutionary implications: cryptophytes have recruited a set ofSELMA components different from those present in haptophytes, stramenopiles and alveolates.In conclusion, during my PhD I identified for the first time the closest living cyanobacterium to primaryplastids and provided new insights on the complex evolution that have undergone secondary plastid-bearing eukaryotes
Wisecaver, Jennifer Hughes. „Horizontal Gene Transfer and Plastid Endosymbiosis in Dinoflagellate Gene Innovation“. Diss., The University of Arizona, 2012. http://hdl.handle.net/10150/265594.
Der volle Inhalt der QuelleJerbi, Chaabnia Soumaya. „Rôle du facteur de terminaison de la traduction eRF3 (eukaryotic Release Factor 3) dans la stabilité des ARN messagers“. Thesis, Paris 6, 2015. http://www.theses.fr/2015PA066391/document.
Der volle Inhalt der QuelleThe mRNA deadenylation involves the deadenylation complexes PAN2-PAN3 and CCR4-NOT-TOB and the translation termination complex eRF1-eRF3. All three proteins, eRF3, PAN3 and TOB, interact with the PABP protein. However, the role of eRF3 is still unclear. It has been reported that eRF3, TOB and PAN3 compete for the binding to PABP. Recently, it has been suggested that eRF3 may regulate mRNA deadenylation in a translation termination-coupled manner. In human, the gene eRF3/GSPT1, contains a trinucleotide GGC repeat in its 5’ end which lead to 5 allelic forms of the gene. There are five known alleles of this gene (7, 9, 10, 11 and 12-GGC). A strong correlation between the longest allele (12-GGC) and gastric and breast cancer development has been reported. Our project was (i) to improve our understanding on the role of eRF3 in the coupling of mRNA deadenylation with translation termination, (ii) to understand whether the GGC repeat polymorphism of eRF3 influences eRF3-PABP interaction. The kinetic measurements of eRF3-PABP interaction obtained by Surface Plasmon Resonance (SPR) show that the affinity of the allelic 12-GGC form is 10 fold lower than that of eRF3a (10-GGC). This decrease is mostly due to difference in the association rate of the complex. The weaker affinity of the 12-GGC allelic form may result in a deregulation of deadenylation, at least for some mRNAs, and thus, could promote cell proliferation and carcinogenesis. In fine, we show that the N-terminal region of eRF3 containing the glycine expansion plays a key role in the eRF3-PABP interaction, in the deadenylation process, and hence, in mRNA stability
Jerbi, Chaabnia Soumaya. „Rôle du facteur de terminaison de la traduction eRF3 (eukaryotic Release Factor 3) dans la stabilité des ARN messagers“. Electronic Thesis or Diss., Paris 6, 2015. https://accesdistant.sorbonne-universite.fr/login?url=https://theses-intra.sorbonne-universite.fr/2015PA066391.pdf.
Der volle Inhalt der QuelleThe mRNA deadenylation involves the deadenylation complexes PAN2-PAN3 and CCR4-NOT-TOB and the translation termination complex eRF1-eRF3. All three proteins, eRF3, PAN3 and TOB, interact with the PABP protein. However, the role of eRF3 is still unclear. It has been reported that eRF3, TOB and PAN3 compete for the binding to PABP. Recently, it has been suggested that eRF3 may regulate mRNA deadenylation in a translation termination-coupled manner. In human, the gene eRF3/GSPT1, contains a trinucleotide GGC repeat in its 5’ end which lead to 5 allelic forms of the gene. There are five known alleles of this gene (7, 9, 10, 11 and 12-GGC). A strong correlation between the longest allele (12-GGC) and gastric and breast cancer development has been reported. Our project was (i) to improve our understanding on the role of eRF3 in the coupling of mRNA deadenylation with translation termination, (ii) to understand whether the GGC repeat polymorphism of eRF3 influences eRF3-PABP interaction. The kinetic measurements of eRF3-PABP interaction obtained by Surface Plasmon Resonance (SPR) show that the affinity of the allelic 12-GGC form is 10 fold lower than that of eRF3a (10-GGC). This decrease is mostly due to difference in the association rate of the complex. The weaker affinity of the 12-GGC allelic form may result in a deregulation of deadenylation, at least for some mRNAs, and thus, could promote cell proliferation and carcinogenesis. In fine, we show that the N-terminal region of eRF3 containing the glycine expansion plays a key role in the eRF3-PABP interaction, in the deadenylation process, and hence, in mRNA stability
Bücher zum Thema "Eukaryotic plasmid"
Esser, Karl, Ulrich Kück, Christine Lang-Hinrichs, Paul Lemke, Heinz Dieter Osiewacz, Ulf Stahl und Paul Tudzynski. Plasmids of Eukaryotes. Berlin, Heidelberg: Springer Berlin Heidelberg, 1986. http://dx.doi.org/10.1007/978-3-642-82585-9.
Der volle Inhalt der Quelle1924-, Esser Karl, Hrsg. Plasmids of eukaryotes: Fundamentals and applications. Berlin: Springer-Verlag, 1986.
Den vollen Inhalt der Quelle findenPlasmids of Eukaryotes. Springer Verlag, 1986.
Den vollen Inhalt der Quelle findenLang-Hinrichs, Christine, Paul Lemke, Ulrich Kück, Heinz D. Osiewacz und Karl Esser. Plasmids of Eukaryotes: Fundamentals and Applications. Springer London, Limited, 2012.
Den vollen Inhalt der Quelle findenEssek, K. Plasmids of Eukaryotes: Fundamentals and Applications (Heidelberg Science Library). Springer, 1986.
Den vollen Inhalt der Quelle findenWickner, Reed. Extrachromosomal Elements in Lower Eukaryotes. Springer London, Limited, 2012.
Den vollen Inhalt der Quelle findenWickner, Reed. Extrachromosomal Elements in Lower Eukaryotes. Springer, 2012.
Den vollen Inhalt der Quelle findenExtrachromosomal elements in lower eukaryotes. New York: Plenum Press, 1986.
Den vollen Inhalt der Quelle findenBuchteile zum Thema "Eukaryotic plasmid"
Bandele, Omari J., und Neil Osheroff. „Cleavage of Plasmid DNA by Eukaryotic Topoisomerase II“. In Methods in Molecular Biology, 39–47. Totowa, NJ: Humana Press, 2009. http://dx.doi.org/10.1007/978-1-60761-340-4_4.
Der volle Inhalt der QuelleMäkelä, P. Helena, Pertti Koski, Petri Riikonen, Suvi Taira, Harry Holthöfer und Mikael Rhen. „The Virulence Plasmid of Salmonella Encodes a Protein Resembling Eukaryotic Tropomyosins“. In Biology of Salmonella, 115–20. Boston, MA: Springer US, 1993. http://dx.doi.org/10.1007/978-1-4615-2854-8_14.
Der volle Inhalt der QuelleHanak, Julian A. J., und Rocky M. Cranenburgh. „Antibiotic-Free Plasmid Selection and Maintenance in Bacteria“. In Recombinant Protein Production with Prokaryotic and Eukaryotic Cells. A Comparative View on Host Physiology, 111–24. Dordrecht: Springer Netherlands, 2001. http://dx.doi.org/10.1007/978-94-015-9749-4_9.
Der volle Inhalt der QuelleBoudrant, Joseph, Baolinh Le, Frantz Fournier und Christian Fonteix. „Modelling of Segregational Plasmid Instability of Recombinant Strain Suspension of Escherichia coli“. In Recombinant Protein Production with Prokaryotic and Eukaryotic Cells. A Comparative View on Host Physiology, 125–39. Dordrecht: Springer Netherlands, 2001. http://dx.doi.org/10.1007/978-94-015-9749-4_10.
Der volle Inhalt der QuelleDouce, Roland, Claude Alban, Maryse A. Block und Jacques Joyard. „The Plastid Envelope Membranes: Purification, Composition and Role in Plastid Biogenesis“. In Organelles in Eukaryotic Cells, 157–76. Boston, MA: Springer US, 1989. http://dx.doi.org/10.1007/978-1-4613-0545-3_11.
Der volle Inhalt der QuelleHackstein, J. H. P., H. Schubert, J. Rosenberg, U. Mackenstedt, M. van den Berg, S. Brul, J. Derksen und H. C. P. Matthijs. „Plastid-Like Organelles in Anaerobic Mastigotes and Parasitic Apicomplexans“. In Eukaryotism and Symbiosis, 49–56. Berlin, Heidelberg: Springer Berlin Heidelberg, 1997. http://dx.doi.org/10.1007/978-3-642-60885-8_4.
Der volle Inhalt der QuelleGarber, Robert C., J. J. Lin und O. C. Yoder. „Mitochondrial Plasmids in Cochliobolus Heterostrophus“. In Extrachromosomal Elements in Lower Eukaryotes, 105–18. Boston, MA: Springer US, 1986. http://dx.doi.org/10.1007/978-1-4684-5251-8_9.
Der volle Inhalt der QuelleHess, W. R., B. Linke und T. Börner. „Impact of Plastid Differentiation on Transcription of Nuclear and Mitochondrial Genes“. In Eukaryotism and Symbiosis, 233–42. Berlin, Heidelberg: Springer Berlin Heidelberg, 1997. http://dx.doi.org/10.1007/978-3-642-60885-8_18.
Der volle Inhalt der QuelleMcFadden, G. I., und P. Gilson. „What’s Eating Eu? The Role of Eukaryote/Eukaryote Endosymbioses in Plastid Origins“. In Eukaryotism and Symbiosis, 24–39. Berlin, Heidelberg: Springer Berlin Heidelberg, 1997. http://dx.doi.org/10.1007/978-3-642-60885-8_2.
Der volle Inhalt der QuelleVolkert, Fredric C., Ling-Chuan Chen Wu, Paul A. Fisher und James R. Broach. „Survival Strategies of the Yeast Plasmid Two-Micron Circle“. In Extrachromosomal Elements in Lower Eukaryotes, 375–96. Boston, MA: Springer US, 1986. http://dx.doi.org/10.1007/978-1-4684-5251-8_29.
Der volle Inhalt der QuelleKonferenzberichte zum Thema "Eukaryotic plasmid"
Homes, W. E., H. R. Lijnen, L. Nelles, C. Kluft und D. Collen. „AN ALANINE INSERTION IN α2-ANTIPLASMIN ‘ENSCHEDE’ ABOLISHES ITS PLASM IN INHIBITORY ACTIVITY“. In XIth International Congress on Thrombosis and Haemostasis. Schattauer GmbH, 1987. http://dx.doi.org/10.1055/s-0038-1642897.
Der volle Inhalt der QuelleTang, Y. Z., X. Lu, F. Dobbs und M. Laroussi. „Effects of Cold Air Plasma on Eukaryotic Microalgae“. In 2007 IEEE Pulsed Power Plasma Science Conference. IEEE, 2007. http://dx.doi.org/10.1109/ppps.2007.4345638.
Der volle Inhalt der QuelleZadorozhny, A. M., S. V. Sharabrin, A. P. Rudometov und L. I. Karpenko. „CONSTRUCTION OF A DNA TEMPLATE FOR THE PRODUCTION OF MRNA ENCODING RBD OF THE S PROTEIN OF THE SARS-COV-2 OMICRON BA.2 VIRUS“. In X Международная конференция молодых ученых: биоинформатиков, биотехнологов, биофизиков, вирусологов и молекулярных биологов — 2023. Novosibirsk State University, 2023. http://dx.doi.org/10.25205/978-5-4437-1526-1-77.
Der volle Inhalt der QuellePannekok, H., A. J. Van Zonneveid, C. J. M. de vries, M. E. MacDonald, H. Veerman und F. Blasi. „FUNCTIONAL PROPERTIES OF DELETION-MUTANTS OF TISSUE-TYPE PLASMINOGEN ACTIVATOR“. In XIth International Congress on Thrombosis and Haemostasis. Schattauer GmbH, 1987. http://dx.doi.org/10.1055/s-0038-1643724.
Der volle Inhalt der QuelleBerichte der Organisationen zum Thema "Eukaryotic plasmid"
Tzfira, Tzvi, Michael Elbaum und Sharon Wolf. DNA transfer by Agrobacterium: a cooperative interaction of ssDNA, virulence proteins, and plant host factors. United States Department of Agriculture, Dezember 2005. http://dx.doi.org/10.32747/2005.7695881.bard.
Der volle Inhalt der QuelleElbaum, Michael, und Peter J. Christie. Type IV Secretion System of Agrobacterium tumefaciens: Components and Structures. United States Department of Agriculture, März 2013. http://dx.doi.org/10.32747/2013.7699848.bard.
Der volle Inhalt der QuelleSchuster, Gadi, und David Stern. Integration of phosphorus and chloroplast mRNA metabolism through regulated ribonucleases. United States Department of Agriculture, August 2008. http://dx.doi.org/10.32747/2008.7695859.bard.
Der volle Inhalt der Quelle