Zeitschriftenartikel zum Thema „Ethylene epoxidation“

Um die anderen Arten von Veröffentlichungen zu diesem Thema anzuzeigen, folgen Sie diesem Link: Ethylene epoxidation.

Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an

Wählen Sie eine Art der Quelle aus:

Machen Sie sich mit Top-50 Zeitschriftenartikel für die Forschung zum Thema "Ethylene epoxidation" bekannt.

Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.

Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.

Sehen Sie die Zeitschriftenartikel für verschiedene Spezialgebieten durch und erstellen Sie Ihre Bibliographie auf korrekte Weise.

1

de Roo, C. Maurits, Johann B. Kasper, Martin van Duin, Francesco Mecozzi und Wesley Browne. „Off-line analysis in the manganese catalysed epoxidation of ethylene-propylene-diene rubber (EPDM) with hydrogen peroxide“. RSC Advances 11, Nr. 51 (2021): 32505–12. http://dx.doi.org/10.1039/d1ra06222k.

Der volle Inhalt der Quelle
Annotation:
Epoxidation of ethylene-propylene-diene rubber (EPDM), based on 5-ethylidene-2-norbornene, to epoxidized EPDM (eEPDM) opens routes to cross-linking and reactive blending, with increased polarity aiding adhesion to polar materials such as silica.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
2

Jenkins, Cody, Jiashen Tian und Ryan J. Milcarek. „Short Term Silver Electrode Microstructure Changes Under Epoxidation Conditions for Solid Oxide Electrolysis Cells“. ECS Meeting Abstracts MA2023-01, Nr. 54 (28.08.2023): 185. http://dx.doi.org/10.1149/ma2023-0154185mtgabs.

Der volle Inhalt der Quelle
Annotation:
Ethylene epoxidation is an important reaction to form ethylene oxide (EO), which is a precursor to many other critical chemicals. This study links short-term EO production to the effects on the microstructure of Ag/yttria-stabilized zirconia cells with and without an electrochemically promoted catalyst (EPOC). Nano scale features called striations were observed using a Scanning Electron Microscope on the silver under all reaction conditions tested. While appearing in both cases, the striations for the EPOC case are finer in size (~200 nm) compared to the no current case (~400 nm). These features did not appear when epoxidation conditions were not present. Striation formation was further linked to the epoxidation reaction through electrochemical impedance spectroscopy (EIS) and gas chromatography. Ethylene conversion to EO declines over the course of hours as striations form, indicating that striations have a negative influence on the reaction. Striation formation further effected the electrochemical performance of the cells, resulting in the low frequency depressions on EIS to shrink in both cases after 10 hours of epoxidation.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
3

Jenkins, Cody, Jiashen Tian und Ryan J. Milcarek. „Short Term Silver Electrode Microstructure Changes Under Epoxidation Conditions for Solid Oxide Electrolysis Cells“. ECS Transactions 111, Nr. 6 (19.05.2023): 1209–21. http://dx.doi.org/10.1149/11106.1209ecst.

Der volle Inhalt der Quelle
Annotation:
Ethylene epoxidation is an important reaction to form ethylene oxide (EO), which is a precursor to many other critical chemicals. This study links short-term EO production to the effects on the microstructure of Ag/yttria-stabilized zirconia cells with and without an electrochemically promoted catalyst (EPOC). Nano scale features called striations were observed using a Scanning Electron Microscope (SEM) on the silver under all reaction conditions tested. While appearing in both cases, the striations for the EPOC case are finer in size (~150 to 250 nm) compared to the no current case (~400 to 500 nm). These features did not appear when epoxidation conditions were not present. Striation formation was further linked to the epoxidation reaction through electrochemical impedance spectroscopy (EIS) and gas chromatography (GC). Ethylene conversion to EO declines over the course of hours as striations form, indicating that striations have a negative influence on the reaction. Striation formation further effected the electrochemical performance of the cells, resulting in the low frequency depressions observed in EIS to shrink in both cases after 10 hours of epoxidation.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
4

VANSANTEN, R. „The mechanism of ethylene epoxidation“. Journal of Catalysis 98, Nr. 2 (April 1986): 530–39. http://dx.doi.org/10.1016/0021-9517(86)90341-6.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
5

Maqbool, Muhammad, Toheed Akhter, Muhammad Faheem, Sohail Nadeem und Chan Ho Park. „Correction: CO2 free production of ethylene oxide via liquid phase epoxidation of ethylene using niobium oxide incorporated mesoporous silica material as the catalyst“. RSC Advances 13, Nr. 8 (2023): 5172. http://dx.doi.org/10.1039/d3ra90009f.

Der volle Inhalt der Quelle
Annotation:
Correction for ‘CO2 free production of ethylene oxide via liquid phase epoxidation of ethylene using niobium oxide incorporated mesoporous silica material as the catalyst’ by Muhammad Maqbool et al., RSC Adv., 2023, 13, 1779–1786, https://doi.org/10.1039/D2RA07240H
APA, Harvard, Vancouver, ISO und andere Zitierweisen
6

Liu, Xin, Yang Yang, Minmin Chu, Ting Duan, Changgong Meng und Yu Han. „Defect stabilized gold atoms on graphene as potential catalysts for ethylene epoxidation: a first-principles investigation“. Catalysis Science & Technology 6, Nr. 6 (2016): 1632–41. http://dx.doi.org/10.1039/c5cy01619c.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
7

Gilbert, B., T. Cavoue, M. Aouine, L. Burel, F. J. Cadete Santos Aires, A. Caravaca, M. Rieu et al. „Ag-based electrocatalysts for ethylene epoxidation“. Electrochimica Acta 394 (Oktober 2021): 139018. http://dx.doi.org/10.1016/j.electacta.2021.139018.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
8

Özbek, M. O., und R. A. van Santen. „The Mechanism of Ethylene Epoxidation Catalysis“. Catalysis Letters 143, Nr. 2 (12.01.2013): 131–41. http://dx.doi.org/10.1007/s10562-012-0957-3.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
9

Özbek, M. Olus, Isik Önal und Rutger A. van Santen. „Ethylene Epoxidation Catalyzed by Silver Oxide“. ChemCatChem 3, Nr. 1 (07.10.2010): 150–53. http://dx.doi.org/10.1002/cctc.201000249.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
10

Chen, Hsin-Tsung, und Chen-Wei Chan. „Promoting ethylene epoxidation on gold nanoclusters: self and CO induced O2 activation“. Physical Chemistry Chemical Physics 17, Nr. 34 (2015): 22336–41. http://dx.doi.org/10.1039/c5cp02809d.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
11

Greiner, M. T., T. E. Jones, B. E. Johnson, T. C. R. Rocha, Z. J. Wang, M. Armbrüster, M. Willinger, A. Knop-Gericke und R. Schlögl. „The oxidation of copper catalysts during ethylene epoxidation“. Physical Chemistry Chemical Physics 17, Nr. 38 (2015): 25073–89. http://dx.doi.org/10.1039/c5cp03722k.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
12

Xin, Jia-Ying, Ning Xu, Sheng-Fu Ji, Yan Wang und Chun-Gu Xia. „Epoxidation of Ethylene by Whole Cell Suspension of Methylosinus trichosporium IMV 3011“. Journal of Chemistry 2017 (2017): 1–6. http://dx.doi.org/10.1155/2017/9191382.

Der volle Inhalt der Quelle
Annotation:
Methane monooxygenase (MMO) has been found in methanotrophic bacteria, which catalyzes the epoxidation of gaseous alkenes to their corresponding epoxides. The whole cell suspension of Methylosinus trichosporium IMV 3011 was used to produce epoxyethane from ethylene. The optimal reaction time and initial ethylene concentration for ethylene epoxidation have been described. The product epoxyethane is not further metabolized and accumulates extracellularly. Thus, exhaustion of reductant and the inhibition of toxic products make it difficult to accumulate epoxyethane continuously. In order to settle these problems, regeneration of cofactor NADH was performed in batch experiments with methane and methanol. The amount of epoxyethane formed before cosubstrate regeneration was between 0.8 and 1.0 nmol/50 mg cells in approximately 8 h. Combining data from 7 batch experiments, the total production of epoxyethane was 2.2 nmol. Production of epoxyethane was improved (4.6 nmol) in 10% gas phase methane since methane acts as an abundant reductant for epoxidation. It was found that the maximum production of epoxyethane (6.6 nmol) occurs with 3 mmol/L methanol. The passive effect of epoxyethane accumulation on epoxyethane production capacity of Methylosinus trichosporium IMV 3011 in batch experiments was studied. Removal of product was suggested to overcome the inhibition of epoxyethane production.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
13

Nakano, Taku, Teddy G. Traylor und David Dolphin. „The formation of N-alkylporphyrins during epoxidation of ethylene catalyzed by iron(III) meso-tetrakis(2,6-dichlorophenyl)porphyrin“. Canadian Journal of Chemistry 68, Nr. 9 (01.09.1990): 1504–6. http://dx.doi.org/10.1139/v90-231.

Der volle Inhalt der Quelle
Annotation:
During the epoxidation of ethylene using iron meso-tetrakis(2,6-dichlorophenyl)porphyrin chloride and iodosopentafluorobenzene several N-alkylporphyrins were formed. The major product was 21-carboxymethyl-5,10,15,20-tetrakis(2,6-dichlorophenyl)porphyrin. This was derived, by oxidation, from the corresponding 21-formylmethyl complex which in turn was obtained from the initially formed N-hydroxyethylporphyrin, a compound not isolated due to its ready oxidation. Keywords: N-alkylporphyrins, suicide labelling, cytochrome P-450, hemin catalysis, epoxidation, oxidation.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
14

Antonyshyn, Iryna, Olga Sichevych, Alim Ormeci, Ulrich Burkhardt, Karsten Rasim, Sven Titlbach, Marc Armbrüster, Stephan A. Schunk und Yuri Grin. „Ca–Ag compounds in ethylene epoxidation reaction“. Science and Technology of Advanced Materials 20, Nr. 1 (19.09.2019): 902–16. http://dx.doi.org/10.1080/14686996.2019.1655664.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
15

van Hoof, A. J. F., E. A. R. Hermans, A. P. van Bavel, H. Friedrich und E. J. M. Hensen. „Structure Sensitivity of Silver-Catalyzed Ethylene Epoxidation“. ACS Catalysis 9, Nr. 11 (19.09.2019): 9829–39. http://dx.doi.org/10.1021/acscatal.9b02720.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
16

Berndt, Torsten, und Olaf Böge. „Gas-Phase Epoxidation of Propylene and Ethylene“. Industrial & Engineering Chemistry Research 44, Nr. 4 (Februar 2005): 645–50. http://dx.doi.org/10.1021/ie049464m.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
17

Ramírez, Adrián, José L. Hueso, Reyes Mallada und Jesús Santamaría. „Ethylene epoxidation in microwave heated structured reactors“. Catalysis Today 273 (September 2016): 99–105. http://dx.doi.org/10.1016/j.cattod.2016.01.007.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
18

Jun, Yang, Deng Jingfa, Yuan Xiaohong und Zhang Shi. „Rhenium as a promoter for ethylene epoxidation“. Applied Catalysis A: General 92, Nr. 2 (Dezember 1992): 73–80. http://dx.doi.org/10.1016/0926-860x(92)80307-x.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
19

van Hoof, A. J. F., R. C. J. van der Poll, H. Friedrich und E. J. M. Hensen. „Dynamics of silver particles during ethylene epoxidation“. Applied Catalysis B: Environmental 272 (September 2020): 118983. http://dx.doi.org/10.1016/j.apcatb.2020.118983.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
20

Dawoodi, Z., und R. L. Kelly. „Epoxidation of ethylene catalysed by molybdenum complexes“. Polyhedron 5, Nr. 1-2 (Januar 1986): 271–75. http://dx.doi.org/10.1016/s0277-5387(00)84921-9.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
21

Yan, Wenjuan, Anand Ramanathan, Madhav Ghanta und Bala Subramaniam. „Towards highly selective ethylene epoxidation catalysts using hydrogen peroxide and tungsten- or niobium-incorporated mesoporous silicate (KIT-6)“. Catal. Sci. Technol. 4, Nr. 12 (2014): 4433–39. http://dx.doi.org/10.1039/c4cy00877d.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
22

Carbonio, Emilia A., Tulio C. R. Rocha, Alexander Yu Klyushin, Igor Píš, Elena Magnano, Silvia Nappini, Simone Piccinin, Axel Knop-Gericke, Robert Schlögl und Travis E. Jones. „Are multiple oxygen species selective in ethylene epoxidation on silver?“ Chemical Science 9, Nr. 4 (2018): 990–98. http://dx.doi.org/10.1039/c7sc04728b.

Der volle Inhalt der Quelle
Annotation:
We show atomic oxygen on an unreconstructed Ag(110) surface has a O 1s binding energy ≤ 528 eV and its stable at low coverages. Our findings point to the idea of multiple selective oxygen species in ethylene epoxidation on Ag.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
23

Impeng, Sarawoot, Thantip Roongcharoen, Phornphimon Maitarad, Hongmin Wu, Chirawat Chitpakdee, Vinich Promarak, Liyi Shi und Supawadee Namuangruk. „High selective catalyst for ethylene epoxidation to ethylene oxide: A DFT investigation“. Applied Surface Science 513 (Mai 2020): 145799. http://dx.doi.org/10.1016/j.apsusc.2020.145799.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
24

Charchi Aghdam, Nazanin, Ning Chen und Jafar Soltan. „Ozonative epoxidation of ethylene: A novel process for production of ethylene oxide“. Applied Catalysis A: General 661 (Juli 2023): 119239. http://dx.doi.org/10.1016/j.apcata.2023.119239.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
25

Linic, Suljo, und Mark A. Barteau. „Control of Ethylene Epoxidation Selectivity by Surface Oxametallacycles“. Journal of the American Chemical Society 125, Nr. 14 (April 2003): 4034–35. http://dx.doi.org/10.1021/ja029076g.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
26

Ozbek, M. O., I. Onal und R. A. Van Santen. „Ethylene epoxidation catalyzed by chlorine-promoted silver oxide“. Journal of Physics: Condensed Matter 23, Nr. 40 (19.09.2011): 404202. http://dx.doi.org/10.1088/0953-8984/23/40/404202.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
27

KUNG, HAROLD H. „A KINETIC MODEL OF THE EPOXIDATION OF ETHYLENE“. Chemical Engineering Communications 118, Nr. 1 (November 1992): 17–24. http://dx.doi.org/10.1080/00986449208936083.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
28

Filimonova, N. B., A. V. Vorob’ev, K. V. Bozhenko, N. I. Moiseeva, S. P. Dolin, A. E. Gekhman und I. I. Moiseev. „Special features of ethylene epoxidation by peroxyacetic acid“. Russian Journal of Physical Chemistry B 4, Nr. 3 (Juni 2010): 408–12. http://dx.doi.org/10.1134/s1990793110030073.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
29

Jones, Travis E., Regina Wyrwich, Sebastian Böcklein, Emilia A. Carbonio, Mark T. Greiner, Alexander Yu Klyushin, Wolfgang Moritz et al. „The Selective Species in Ethylene Epoxidation on Silver“. ACS Catalysis 8, Nr. 5 (21.03.2018): 3844–52. http://dx.doi.org/10.1021/acscatal.8b00660.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
30

Antonyshyn, Iryna, Olga Sichevych, Karsten Rasim, Alim Ormeci, Ulrich Burkhardt, Sven Titlbach, Stephan A. Schunk, Marc Armbrüster und Yuri Grin. „Anisotropic Reactivity of CaAg under Ethylene Epoxidation Conditions“. Inorganic Chemistry 57, Nr. 17 (16.08.2018): 10821–31. http://dx.doi.org/10.1021/acs.inorgchem.8b01449.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
31

AYAME, A. „Epoxidation of ethylene over Ag$z.sbnd;NaCl catalysts“. Journal of Catalysis 100, Nr. 2 (August 1986): 401–13. http://dx.doi.org/10.1016/0021-9517(86)90107-7.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
32

van Hoof, Arno J. F., Ivo A. W. Filot, Heiner Friedrich und Emiel J. M. Hensen. „Reversible Restructuring of Silver Particles during Ethylene Epoxidation“. ACS Catalysis 8, Nr. 12 (08.11.2018): 11794–800. http://dx.doi.org/10.1021/acscatal.8b03331.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
33

Yinsheng, Peng, Zhang Shi, Tang Liang und Deng Jingfa. „Study of the promoting effects in ethylene epoxidation“. Catalysis Letters 12, Nr. 1-3 (1992): 307–18. http://dx.doi.org/10.1007/bf00767213.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
34

Antonyshyn, Iryna, Olga Sichevych, Karsten Rasim, Alim Ormeci, Ulrich Burkhardt, Sven Titlbach, Stephan Andreas Schunk, Marc Armbrüster und Yuri Grin. „Chemical Behaviour of CaAg2 under Ethylene Epoxidation Conditions“. European Journal of Inorganic Chemistry 2018, Nr. 35 (26.08.2018): 3933–41. http://dx.doi.org/10.1002/ejic.201800710.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
35

Li, Xian Feng, Jin Bing Li, Jian She Chen, Zhi Xiang Zhang, Wu Jun Dai, Bao Lin Cui und Qiang Lin. „Development and Application of YS Silver Catalysts for Ethylene Epoxidation“. Advanced Materials Research 418-420 (Dezember 2011): 1760–67. http://dx.doi.org/10.4028/www.scientific.net/amr.418-420.1760.

Der volle Inhalt der Quelle
Annotation:
Ethylene oxide (EO) is an important organic chemical material, and Silver catalyst is an important petrochemical catalyst and is regarded as the core of EO/EG production process. The catalyst's performance is the major factor that directly determines the economic efficiency of commercial production of ethylene oxide. In this paper, we will introduce the development and application of YS silver catalysts developed by Beijing Research Institute of Chemical Industry, SINOPEC.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
36

Suttikul, Thitiporn, Chakrit Tongurai, Hidetoshi Sekiguchi und Sumaeth Chavadej. „Ethylene Epoxidation in Cylindrical Dielectric Barrier Discharge: Effects of Separate Ethylene/Oxygen Feed“. Plasma Chemistry and Plasma Processing 32, Nr. 6 (05.07.2012): 1169–88. http://dx.doi.org/10.1007/s11090-012-9398-4.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
37

Ren, Qizhi, Zongsheng Hou, Hong Zhang, Aiqin Wang und Shuangyan Liu. „Catalytic enantioselective epoxidation of olefins by chiral mono-faced strapped porphyrin with nitrogen blocking ligand“. Journal of Porphyrins and Phthalocyanines 13, Nr. 12 (Dezember 2009): 1214–20. http://dx.doi.org/10.1142/s1088424609001583.

Der volle Inhalt der Quelle
Annotation:
The chiral mono-faced binaphthyl strapped porphyrins were synthesized and 1H NMR characterized. Asymmetric epoxidation of olefins such as styrene derivatives and trimethylsilyl ethylene with iodosobenzene as oxidant was achieved by using the iron complex as catalyst in the presence of a nitrogen ligand. Enantiomeric excess (ee) of 80% and yield of 88% were measured for the epoxidation of styrene in the presence of 4-phenyl pyridine. The coordination capability of nitrogen ligands to catalysts measured by UV-vis spectrophotometric titrations evidence that the unstrapped face of the mono-faced catalyst is blocked by the nitrogen ligand coordination to the iron ion of the catalyst.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
38

Greiner, Mark T., Travis E. Jones, Alexander Klyushin, Axel Knop-Gericke und Robert Schlögl. „Ethylene Epoxidation at the Phase Transition of Copper Oxides“. Journal of the American Chemical Society 139, Nr. 34 (15.08.2017): 11825–32. http://dx.doi.org/10.1021/jacs.7b05004.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
39

Peña, Miguel A., David M. Carr, King Lun Yeung und Arvind Varma. „Ethylene epoxidation in a catalytic packed-bed membrane reactor“. Chemical Engineering Science 53, Nr. 22 (November 1998): 3821–34. http://dx.doi.org/10.1016/s0009-2509(98)00189-4.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
40

Zhou, Xing-Gui, und Wei-Kang Yuan. „Optimization of the fixed-bed reactor for ethylene epoxidation“. Chemical Engineering and Processing: Process Intensification 44, Nr. 10 (Oktober 2005): 1098–107. http://dx.doi.org/10.1016/j.cep.2005.03.008.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
41

Won Park, Dae, und Georges Gau. „Simulation of ethylene epoxidation in a multitubular transport reactor“. Chemical Engineering Science 41, Nr. 1 (1986): 143–50. http://dx.doi.org/10.1016/0009-2509(86)85207-1.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
42

Ozbek, M. O., I. Onal und R. A. van Santen. „Effect of Surface and Oxygen Coverage on Ethylene Epoxidation“. Topics in Catalysis 55, Nr. 11-13 (26.07.2012): 710–17. http://dx.doi.org/10.1007/s11244-012-9870-7.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
43

BOSKOVIC, G. „Deactivation kinetics of Ag/Al2O3 catalyst for ethylene epoxidation“. Journal of Catalysis 226, Nr. 2 (September 2004): 334–42. http://dx.doi.org/10.1016/j.jcat.2004.06.003.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
44

Ozbek, M. O., I. Onal und R. A. van Santen. „Why silver is the unique catalyst for ethylene epoxidation“. Journal of Catalysis 284, Nr. 2 (Dezember 2011): 230–35. http://dx.doi.org/10.1016/j.jcat.2011.08.004.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
45

Marek, E. J., S. Gabra, J. S. Dennis und S. A. Scott. „High selectivity epoxidation of ethylene in chemical looping setup“. Applied Catalysis B: Environmental 262 (März 2020): 118216. http://dx.doi.org/10.1016/j.apcatb.2019.118216.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
46

Russo, V., T. Kilpiö, J. Hernandez Carucci, M. Di Serio und T. O. Salmi. „Modeling of microreactors for ethylene epoxidation and total oxidation“. Chemical Engineering Science 134 (September 2015): 563–71. http://dx.doi.org/10.1016/j.ces.2015.05.019.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
47

YANG, J., J. DENG, X. YUAN und S. ZHANG. „ChemInform Abstract: Rhenium as a Promoter for Ethylene Epoxidation.“ ChemInform 24, Nr. 11 (20.08.2010): no. http://dx.doi.org/10.1002/chin.199311086.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
48

Özbek, M. Oluş, Işik Önal und Rutger A. van Santen. „Chlorine and Caesium Promotion of Silver Ethylene Epoxidation Catalysts“. ChemCatChem 5, Nr. 2 (21.01.2013): 443–51. http://dx.doi.org/10.1002/cctc.201200690.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
49

Lu, Xinqing, Wen-Juan Zhou, Yejun Guan, Armin Liebens und Peng Wu. „Enhancing ethylene epoxidation of a MWW-type titanosilicate/H2O2 catalytic system by fluorine implanting“. Catalysis Science & Technology 7, Nr. 12 (2017): 2624–31. http://dx.doi.org/10.1039/c7cy00428a.

Der volle Inhalt der Quelle
Annotation:
SiO3/2F units in the framework of Ti-MWW generate stronger hydrogen-bonding between Hend in Ti–Oα–Oβ–Hend intermediates and the adjacent Si–F species, which effectively improves the catalytic performance of Ti-MWW for the liquid-phase epoxidation of ethylene.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
50

Suttikul, Thitiporn, Sirirath Yaowapong-aree, Hidetoshi Sekiguchi, Sumaeth Chavadej und Jittipan Chavadej. „Improvement of ethylene epoxidation in low-temperature corona discharge by separate ethylene/oxygen feed“. Chemical Engineering and Processing: Process Intensification 70 (August 2013): 222–32. http://dx.doi.org/10.1016/j.cep.2013.03.018.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
Wir bieten Rabatte auf alle Premium-Pläne für Autoren, deren Werke in thematische Literatursammlungen aufgenommen wurden. Kontaktieren Sie uns, um einen einzigartigen Promo-Code zu erhalten!

Zur Bibliographie