Inhaltsverzeichnis
Auswahl der wissenschaftlichen Literatur zum Thema „Estimation de la surface foliaire“
Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an
Machen Sie sich mit den Listen der aktuellen Artikel, Bücher, Dissertationen, Berichten und anderer wissenschaftlichen Quellen zum Thema "Estimation de la surface foliaire" bekannt.
Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.
Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.
Zeitschriftenartikel zum Thema "Estimation de la surface foliaire"
Ruget, F., R. Bonhomme und M. Chartier. „Estimation simple de la surface foliaire de plantes de maïs en croissance“. Agronomie 16, Nr. 9 (1996): 553–62. http://dx.doi.org/10.1051/agro:19960903.
Der volle Inhalt der QuelleCregg, Bert M. „Leaf Area Estimation of Mature Foliage of Juniperus“. Forest Science 38, Nr. 1 (01.02.1992): 61–67. http://dx.doi.org/10.1093/forestscience/38.1.61.
Der volle Inhalt der QuellePalacin, Jordi, Tomas Palleja, Marcel Tresanchez, Ricardo Sanz, Jordi Llorens, Manel Ribes-Dasi, Joan Masip, Jaume Arno, Alexandre Escola und Joan Ramon Rosell. „Real-Time Tree-Foliage Surface Estimation Using a Ground Laser Scanner“. IEEE Transactions on Instrumentation and Measurement 56, Nr. 4 (August 2007): 1377–83. http://dx.doi.org/10.1109/tim.2007.900126.
Der volle Inhalt der QuelleZeide, Boris, und Peter Pfeifer. „A Method for Estimation of Fractal Dimension of Tree Crowns“. Forest Science 37, Nr. 5 (01.11.1991): 1253–65. http://dx.doi.org/10.1093/forestscience/37.5.1253.
Der volle Inhalt der QuelleLin, C., S. C. Popescu, S. C. Huang, Y. C. Chen, P. T. Chang und H. L. Wen. „A novel reflectance-based model for evaluating chlorophyll concentration of fresh and water-stressed leaves“. Biogeosciences Discussions 10, Nr. 11 (18.11.2013): 17893–937. http://dx.doi.org/10.5194/bgd-10-17893-2013.
Der volle Inhalt der QuelleRégnière, Jacques, und Chris Sanders. „Abundance and Distribution of Foliage on Balsam Fir and White Spruce in Reference to Spruce Budworm Ecology and Absolute Population Density Estimation“. Forests 13, Nr. 4 (30.03.2022): 534. http://dx.doi.org/10.3390/f13040534.
Der volle Inhalt der QuelleLin, C., S. C. Popescu, S. C. Huang, P. T. Chang und H. L. Wen. „A novel reflectance-based model for evaluating chlorophyll concentrations of fresh and water-stressed leaves“. Biogeosciences 12, Nr. 1 (06.01.2015): 49–66. http://dx.doi.org/10.5194/bg-12-49-2015.
Der volle Inhalt der QuelleLhomme, J. P., N. Boudhina, M. M. Masmoudi und A. Chehbouni. „Estimation of crop water requirements: extending the one-step approach to dual crop coefficients“. Hydrology and Earth System Sciences 19, Nr. 7 (30.07.2015): 3287–99. http://dx.doi.org/10.5194/hess-19-3287-2015.
Der volle Inhalt der QuelleLhomme, J. P., N. Boudhina, M. M. Masmoudi und A. Chehbouni. „Estimation of crop water requirements: extending the one-step approach to dual crop coefficients“. Hydrology and Earth System Sciences Discussions 12, Nr. 5 (13.05.2015): 4933–63. http://dx.doi.org/10.5194/hessd-12-4933-2015.
Der volle Inhalt der QuelleBrand, David G. „Estimating the surface area of spruce and pine foliage from displaced volume and length“. Canadian Journal of Forest Research 17, Nr. 10 (01.10.1987): 1305–8. http://dx.doi.org/10.1139/x87-203.
Der volle Inhalt der QuelleDissertationen zum Thema "Estimation de la surface foliaire"
Hu, Ronghai. „Estimation cohérente de l'indice de surface foliaire en utilisant des données terrestres et aéroportées“. Thesis, Strasbourg, 2018. http://www.theses.fr/2018STRAD021/document.
Der volle Inhalt der QuelleLeaf Area Index (LAI), defined as one half of the total leaf area per unit ground surface area, is a key parameter of vegetation structure for modeling Earth's ecological cycle and its acquisition accuracy always has the need and opportunity for improvement. Active laser scanning provides an opportunity for consistent LAI retrieval at multiple scales because terrestrial laser scanning (TLS) and airborne laser scanning (ALS) have the similar physical mechanism. However, the three-dimensional information of laser scanning is not fully explored in current methods and the traditional theories require adaptation. In this thesis, the path length distribution model is proposed to model the clumping effect, and it is applied to the TLS and ALS data. The method of obtaining the path length distribution of different platforms is studied, and the consistent retrieval model is established. This method is found to improve the individual tree measurement in urban areas and LAI mapping in natural forest, and its results at consistent at different scales. The model is expected to facilitate the consistent retrieval of the forest leaf area index using ground and airborne data
Béland, Martin. „Estimation de paramètres structuraux des arbres dans une savane à partir de mesures LiDAR terrestre et d'imagerie à très haute résolution spatiale“. Thèse, Université de Sherbrooke, 2011. http://savoirs.usherbrooke.ca/handle/11143/2849.
Der volle Inhalt der QuelleSoma, Maxime. „Estimation de la distribution spatiale de surface et de biomasse foliaires de couverts forestiers méditerranéens à partir de nuages de points acquis par un LIDAR terrestre“. Thesis, Aix-Marseille, 2019. http://www.theses.fr/2019AIXM0111.
Der volle Inhalt der QuelleTo better understand functioning of forest ecosystems at fine scale, ecophysiological model attempt to include energy and material fluxes. Such exchanges depend on the distribution of vegetation. Hence, these models require a tridimensional (3D) description of vegetation structure, at a level of detail which can only be retrieve with remote sensing at large scale. Terrestrial LiDAR (Light Detection And Ranging) have a great potential to provide 3D description of vegetation elements in canopy. Previous studies established promising relations between the point density and quantity of vegetation. This work develop these statistical methods, focusing on source of errors. Systematic biases are corrected at branch, tree and plot scales. This study relies on both numerical simulations and field experiments. First, we test estimators on branches in laboratory conditions. On this natural vegetation, estimators are sensitive to voxel size and distance from instrument with phase-shift LiDAR. Developed corrections from this branch experiment are valid at tree scale. However, difficulties arising from sampling limitations due to occlusion and instrument sampling pattern cause negative biases in dense areas. Specific investigations are conducted to identify source of errors and to optimize multiscan estimations. A statistical method called LAD-kriging, based on spatial correlation within vegetation, improves local accuracy of estimations and limits underestimations due to occlusion. The tools produced in this work allow to map vegetation at plot scale by providing unbiased estimator of leaf area. Some of these tools are currently implemented within open access Computree software
Soontornchainaksaeng, Puangpaka. „Mise en place de la surface foliaire, accumulation et répartition de la matière sèche de sorgho (Sorghum bicolor (L. ) Moench) : effet de la température“. Toulouse, INPT, 1995. http://www.theses.fr/1995INPT050G.
Der volle Inhalt der QuelleClaverie, Martin. „Estimation spatialisée de la biomasse et des besoins en eau des cultures à l'aide de données satellitales à hautes résolutions spatiale et temporelle : application aux agrosystèmes du sud-ouest de la France“. Toulouse 3, 2012. http://thesesups.ups-tlse.fr/1789/.
Der volle Inhalt der QuelleThere is a close relationship between agrosystems (or agroecosystems) and carbon (soil carbon sequestration process) and water (irrigation management systems) cycles. This PhD thesis contributes to the analysis and the validation of methods for quantification of agrosystems biomass (carbon cycle) and water needs (water cycle) over large land surfaces. To this end, remote sensing data are assimilated within a crop model, SAFY (Simple Algorithm For Yield Estimate), through a key biophysical variable, the GAI (Green area index). GAI in situ (proxy-detection) and spatialized (inversion of radiative transfer models) estimation methods are first assessed. Secondly, remote sensed time series of GAI are used for the calibration of the SAFY crop model in order to deliver spatial estimates of crop biomass and water needs. These estimations are validated, through direct comparison with an experimental system which is located in the southwest of France and run from 2006 to 2010. Studied crops are maize and soybean, which are irrigated, and also sunflower, which is non-irrigated. Remote sensing data used to estimate the time series of GAI are taken from Formosat-2 sensors. Such data are particularly relevant for the crop monitoring because they combine high spatial resolution (8 m) and high temporal frequency (1 day)
Mohammadi, Vahid. „Design, Development and Evaluation of a System for the Detection of Aerial Parts and Measurement of Growth Indices of Bell Pepper Plant Based on Stereo and Multispectral Imaging“. Electronic Thesis or Diss., Bourgogne Franche-Comté, 2022. http://www.theses.fr/2022UBFCK109.
Der volle Inhalt der QuelleDuring the growth of plants, monitoring them brings much benefits to the producers. This monitoring includes the measurement of physical properties, counting plants leaves, detection of plants and separation of them from weeds. All these can be done different techniques, however, the techniques are favorable that are non-destructive because plant is a very sensitive creature that any manipulation can put disorder in its growth or lead to losing leaves or branches. Imaging techniques are of the best solutions for plants growth monitoring and geometric measurements. In this regard, in this project the use of stereo imaging and multispectral data was studied. Active and passive stereo imaging were employed for the estimation of physical properties and counting leaves and multispectral data was utilized for the separation of crop and weed. Bell pepper plant was used for imaging measurements for a period of 30 days and for crop/weed separation, the spectral responses of bell pepper and five weeds were measured. Nine physical properties of pepper leaves (i.e. main leaf diameters, leaf area, leaf perimeter etc.) were measured using a scanner and was used as a database and also for comparing the estimated values to the actual values. The stereo system consisted of two LogiTech cameras and a video projector. First the stereo system was calibrated using sample images of a standard checkerboard in different position and angles. The system was controlled using the computer for turning a light line on, recording videos of both cameras while light is being swept on the plant and then stopping the light. The frames were extracted and processed. The processing algorithm first filtered the images for removing noise and then thresholded the unwanted pixels of environment. Then, using the peak detection method of Center of Mass the main and central part of the light line was extracted. After, the images were rectified by using the calibration information. Then the correspondent pixels were detected and used for the 3D model development. The obtained point cloud was transformed to a meshed surface and used for physical properties measurement. Passive stereo imaging was used for leaf detection and counting. For passive stereo matching six different matching algorithms and three cost functions were used and compared. For spectral responses of plants, they were freshly moved to the laboratory, leaves were detached from the plants and placed on a blur dark background. Type A lights were used for illumination and the spectral measurements were carried out using a spectroradiometer from 380 nm to 1000 nm. To reduce the dimensionality of the data, PCA and wavelet transform were used. Results of this study showed that the use of stereo imaging can propose a cheap and non-destructive tool for agriculture. An important advantage of active stereo imaging is that it is light-independent and can be used during the night. However, the use of active stereo for the primary stage of growth provides acceptable results but after that stage, the system will be unable to detect and reconstruct all leaves and plant's parts. Using ASI the R2 values of 0.978 and 0.967 were obtained for the estimation leaf area and perimeter, respectively. The results of separation of crop and weeds using spectral data were very promising and the classifier—which was based on deep learning—could completely separate pepper from other five weeds
Wang, Wei-Min. „Estimation of component temperatures of vegetative canopy with Vis/NIR and TIR multiple-angular data through inversion of vegetative canopy radiative transfer model“. Strasbourg, 2009. http://www.theses.fr/2009STRA6027.
Der volle Inhalt der QuelleThe separation of component temperature is the basic step for the application of two-source algorithm. Multi-angular thermal infrared measurements provide a chance for the estimation of component temperatures (namely, soil and vegetation temperatures) with remotely-sensed data. The objective of this study is to explore the factors that affect the estimation of component temperatures and propose new algorithm for inverting the canopy radiative transfer models to compute component temperatures. The objectives of this dissertation include: (1) finding an appropriate candidate leaf angle distribution functions for modeling and inversion, (2) evaluating the scaling behavior of Beer's law and its effect on the estimation of component temperatures, (3) proposing an analytical model for directional brightness temperature at top of canopy, (4) retrieving component temperatures with neural network and simplex algorithms. The effects of leaf angle distribution function on extinction coefficient, which is a key parameter for simulating the radiative transfer through vegetative canopy, is explored to improve the radiative transfer modeling. These contributions will enhance our understanding of the basic problems existing in thermal IR remote sensing and improve the simulation of land surface energy balance. Further work can be conducted to continue the enhancement and application of proposed algorithm to remote sensing images
Abd, el Rahman Nabil. „Essai d'établissement de diagnostics physiologiques précoces appliqués à diverses variétés de maïs“. Paris 11, 1989. http://www.theses.fr/1989PA112097.
Der volle Inhalt der QuelleDejean, Sébastien. „Comparaison de procédures d'estimation dans le cadre des modèles non linéaires à paramètres aléatoires : application à la modélisation de l'évolution temporelle de l'indice de surface foliaire de cultures observées par télédétection spatiale“. Toulouse 3, 2002. http://www.theses.fr/2002TOU30062.
Der volle Inhalt der QuelleIn the spatial remote sensing for agriculture framework, we deal with the estimation of a crop leaf area index evolution model from high temporal resolution images ; the scope of the work is the improvement of yield prediction over a large area. Regular measurements can be considered as longitudinal data of a population of pixels. We propose a random parameter modelling to express between-pixels variability and to deal with the whole pixels simultaneously. We present parametric and non parametric expressions of the between-pixels variability. We focus on the parametric model for which we review estimation methods based either on a per-pixel approach or on the maximization of an approximated global likelihood. .
Van, Aarde John Benjamin. „Stereological estimation of surface area in MRI“. Thesis, University of Oxford, 2006. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.531787.
Der volle Inhalt der QuelleBücher zum Thema "Estimation de la surface foliaire"
Bradley, Cecil D. A statistical analysis of Surface Escort cost estimation. Monterey, California: Naval Postgraduate School, 1988.
Den vollen Inhalt der Quelle findenEstrada, Francisco J. Estimation of surface orientation from a single image. Ottawa: National Library of Canada, 2001.
Den vollen Inhalt der Quelle findenMiller, James H. Estimation of sea surface wave spectra using acoustic tomography. Woods Hole, Mass: Woods Hole Oceanographic Institution, 1987.
Den vollen Inhalt der Quelle findenFrederickson, Paul A. The effect of infrared sea surface temperature measurements on evaporation duct height estimation. Monterey, Calif: Naval Postgraduate School, 1994.
Den vollen Inhalt der Quelle findenCanada. Defence Research Establishment Atlantic. Fortran Program For Fast Surface Ship Resistance and Power Estimation: Version 3. S.l: s.n, 1985.
Den vollen Inhalt der Quelle findenLiebermann, Timothy D. User's manual for estimation of dissolved-solids concentrations and loads in surface water. Denver, Colo: Dept. of the Interior, U.S. Geological Survey, 1987.
Den vollen Inhalt der Quelle findenLieberman, Timothy D. User's manual for estimation of dissolved-solids concentrations and loads in surface water. Denver, Colo: Dept. of the Interior, U.S. Geological Survey, 1987.
Den vollen Inhalt der Quelle findenClean Air Technology Center (U.S.) und U.S.-México Border Information Center on Air Pollution., Hrsg. Emission estimation techniques for unique source categories in Mexicali, Mexico. Research Triangle Park, NC: U.S. Environmental Protection Agency, Office of Air Quality Planning and Standards, Clean Air Technology Center, 1999.
Den vollen Inhalt der Quelle findenClean Air Technology Center (U.S.) und U.S.-México Border Information Center on Air Pollution, Hrsg. Emission estimation techniques for unique source categories in Mexicali, Mexico. Research Triangle Park, NC: U.S. Environmental Protection Agency, Office of Air Quality Planning and Standards, Clean Air Technology Center, 1999.
Den vollen Inhalt der Quelle findenO'Muircheartaigh, I. G. Estimation of sea-surface windspeed from whitecap cover: Statistical approaches compared empirically and by simulation. Monterey, Calif: Naval Postgraduate School, 1985.
Den vollen Inhalt der Quelle findenBuchteile zum Thema "Estimation de la surface foliaire"
Yfantis, E. A., G. T. Flatman und F. Miller. „Parametric Surface Estimation“. In Quantitative Geology and Geostatistics, 145–53. Dordrecht: Springer Netherlands, 1993. http://dx.doi.org/10.1007/978-94-011-1739-5_13.
Der volle Inhalt der QuellePal, Subodh Chandra, und Rabin Chakrabortty. „Estimation of Surface Runoff“. In Climate Change Impact on Soil Erosion in Sub-tropical Environment, 51–65. Cham: Springer International Publishing, 2022. http://dx.doi.org/10.1007/978-3-031-15721-9_4.
Der volle Inhalt der QuelleDobson, Fred W., und Stuart D. Smith. „Estimation of Solar Radiation at Sea“. In The Ocean Surface, 525–33. Dordrecht: Springer Netherlands, 1985. http://dx.doi.org/10.1007/978-94-015-7717-5_70.
Der volle Inhalt der QuelleSmith, Michael, Robert Kohn und Paul Yau. „Nonparametric Bayesian Bivariate Surface Estimation“. In Smoothing and Regression, 545–80. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2012. http://dx.doi.org/10.1002/9781118150658.ch19.
Der volle Inhalt der QuelleWindreich, Guy, Nahum Kiryati und Gabriele Lohmann. „Surface Area Estimation in Practice“. In Discrete Geometry for Computer Imagery, 358–67. Berlin, Heidelberg: Springer Berlin Heidelberg, 2003. http://dx.doi.org/10.1007/978-3-540-39966-7_34.
Der volle Inhalt der QuelleYu, Kegen. „Sea Surface Wind Speed Estimation“. In Navigation: Science and Technology, 125–62. Singapore: Springer Singapore, 2021. http://dx.doi.org/10.1007/978-981-16-0411-9_6.
Der volle Inhalt der QuelleBannister, R. W., A. S. Burgess und D. J. Kewley. „Estimation of Source Characteristics from Underwater Noisefield Measurements“. In Sea Surface Sound, 377–89. Dordrecht: Springer Netherlands, 1988. http://dx.doi.org/10.1007/978-94-009-3017-9_27.
Der volle Inhalt der QuelleRacz, Livia, und Julian Szekely. „Estimation of Solder Volume“. In Handbook of Fine Pitch Surface Mount Technology, 267–307. Boston, MA: Springer US, 1994. http://dx.doi.org/10.1007/978-1-4684-1437-0_8.
Der volle Inhalt der QuelleStevens, Jeffry L., und John R. Murphy. „Yield Estimation from Surface-wave Amplitudes“. In Monitoring the Comprehensive Nuclear-Test-Ban Treaty: Source Processes and Explosion Yield Estimation, 2227–51. Basel: Birkhäuser Basel, 2001. http://dx.doi.org/10.1007/978-3-0348-8310-8_13.
Der volle Inhalt der QuelleLadický, L’ubor, Bernhard Zeisl und Marc Pollefeys. „Discriminatively Trained Dense Surface Normal Estimation“. In Computer Vision – ECCV 2014, 468–84. Cham: Springer International Publishing, 2014. http://dx.doi.org/10.1007/978-3-319-10602-1_31.
Der volle Inhalt der QuelleKonferenzberichte zum Thema "Estimation de la surface foliaire"
Reid, Robert B., Mark E. Oxley, Michael T. Eismann und Matthew E. Goda. „Quantifying surface normal estimation“. In Defense and Security Symposium, herausgegeben von Dennis H. Goldstein und David B. Chenault. SPIE, 2006. http://dx.doi.org/10.1117/12.664161.
Der volle Inhalt der QuelleYoon, Jungkeun, Brian Noble und Mingyan Liu. „Surface street traffic estimation“. In the 5th international conference. New York, New York, USA: ACM Press, 2007. http://dx.doi.org/10.1145/1247660.1247686.
Der volle Inhalt der QuelleBevc, Dimiti. „Near‐surface velocity estimation“. In SEG Technical Program Expanded Abstracts 1994. Society of Exploration Geophysicists, 1994. http://dx.doi.org/10.1190/1.1932063.
Der volle Inhalt der QuelleEl Yadari, N., F. Ernst und W. A. Mulder. „Near-Surface Attenuation Estimation“. In 69th EAGE Conference and Exhibition incorporating SPE EUROPEC 2007. European Association of Geoscientists & Engineers, 2007. http://dx.doi.org/10.3997/2214-4609.201401618.
Der volle Inhalt der QuelleLenssen, Jan Eric, Christian Osendorfer und Jonathan Masci. „Deep Iterative Surface Normal Estimation“. In 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). IEEE, 2020. http://dx.doi.org/10.1109/cvpr42600.2020.01126.
Der volle Inhalt der QuelleBoiero, D., M. Werning und P. Vermeer. „Q Estimation from Surface Waves“. In 75th EAGE Conference and Exhibition incorporating SPE EUROPEC 2013. Netherlands: EAGE Publications BV, 2013. http://dx.doi.org/10.3997/2214-4609.20130002.
Der volle Inhalt der QuelleWerghi, N., R. B. Fisher, A. Ashbrook und C. Robertson. „Improving Second-order Surface Estimation“. In British Machine Vision Conference 1999. British Machine Vision Association, 1999. http://dx.doi.org/10.5244/c.13.28.
Der volle Inhalt der QuelleDiehl, Norbert. „Motion Estimation Including Surface Models“. In 33rd Annual Techincal Symposium, herausgegeben von Andrew G. Tescher. SPIE, 1990. http://dx.doi.org/10.1117/12.962326.
Der volle Inhalt der QuelleOrji, Okwudili C., Walter Sollner und Leiv J. Gelius. „Sea Surface Reflection Coefficient Estimation“. In SEG Technical Program Expanded Abstracts 2013. Society of Exploration Geophysicists, 2013. http://dx.doi.org/10.1190/segam2013-0944.1.
Der volle Inhalt der QuelleShmatko, A. A. „Methods of estimation surface roughness“. In 2013 International Kharkov Symposium on Physics and Engineering of Microwaves, Millimeter and Submillimeter Waves (MSMW). IEEE, 2013. http://dx.doi.org/10.1109/msmw.2013.6622147.
Der volle Inhalt der QuelleBerichte der Organisationen zum Thema "Estimation de la surface foliaire"
Wendelberger, James G. Container Surface Evaluation by Function Estimation. Office of Scientific and Technical Information (OSTI), August 2017. http://dx.doi.org/10.2172/1374271.
Der volle Inhalt der QuelleGray, Kathy, Robert Keane, Ryan Karpisz, Alyssa Pedersen, Rick Brown und Taylor Russell. Bayesian techniques for surface fuel loading estimation. Ft. Collins, CO: U.S. Department of Agriculture, Forest Service, Rocky Mountain Research Station, 2016. http://dx.doi.org/10.2737/rmrs-rn-74.
Der volle Inhalt der QuelleGray, Kathy, Robert Keane, Ryan Karpisz, Alyssa Pedersen, Rick Brown und Taylor Russell. Bayesian techniques for surface fuel loading estimation. Ft. Collins, CO: U.S. Department of Agriculture, Forest Service, Rocky Mountain Research Station, 2016. http://dx.doi.org/10.2737/rmrs-rn-74.
Der volle Inhalt der QuelleGivens, C. A., M. A. Valdivia, S. Saeb, C. T. Francke und S. J. Patchet. Estimation of surface subsidence at the Waste Isolation Pilot Plant. Office of Scientific and Technical Information (OSTI), August 1995. http://dx.doi.org/10.2172/94598.
Der volle Inhalt der QuelleUkeiley, Lawrence, Louis Cattafesta, Terry Song und George Shumway. Estimation of Time Dependent Properties from Surface Pressure in Open Cavities. Fort Belvoir, VA: Defense Technical Information Center, Februar 2008. http://dx.doi.org/10.21236/ada500051.
Der volle Inhalt der QuelleHanson, Kurt A., Tetsu Hara, Erik J. Bock und Andrey B. Karachintsev. Estimation of Directional Surface Wave Spectra from a Towed Research Catamaran. Fort Belvoir, VA: Defense Technical Information Center, März 1997. http://dx.doi.org/10.21236/ada333444.
Der volle Inhalt der QuelleWatkins, Tyson R., Peter Randall Schunk und Scott Alan Roberts. Technique for the estimation of surface temperatures from embedded temperature sensing for rapid, high energy surface deposition. Office of Scientific and Technical Information (OSTI), Juli 2014. http://dx.doi.org/10.2172/1148576.
Der volle Inhalt der QuelleWendelberger, James G., Juan Duque, Elizabeth J. Kelly, John M. Berg und Kimberly Ann Kaufeld. Container Surface Evaluation: Background Estimation, Background Removal, Feature Detection, and Image Ranking. Office of Scientific and Technical Information (OSTI), September 2017. http://dx.doi.org/10.2172/1392783.
Der volle Inhalt der QuelleReister, D. B., E. M. Oblow, J. Barhen und J. B. DuBose. Application of Global Optimization to the Estimation of Surface-Consistent Residual Statics. Office of Scientific and Technical Information (OSTI), Oktober 1999. http://dx.doi.org/10.2172/14111.
Der volle Inhalt der QuellePoppeliers, Christian. The use of multiwavelets for uncertainty estimation in seismic surface wave dispersion. Office of Scientific and Technical Information (OSTI), Dezember 2017. http://dx.doi.org/10.2172/1413439.
Der volle Inhalt der Quelle