Inhaltsverzeichnis
Auswahl der wissenschaftlichen Literatur zum Thema „Error detection algorithms“
Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an
Machen Sie sich mit den Listen der aktuellen Artikel, Bücher, Dissertationen, Berichten und anderer wissenschaftlichen Quellen zum Thema "Error detection algorithms" bekannt.
Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.
Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.
Zeitschriftenartikel zum Thema "Error detection algorithms"
Liu, Qing Min, Xue Li und L. Zhang. „Realization Method for Detection on Arc Based on CCD“. Applied Mechanics and Materials 687-691 (November 2014): 856–60. http://dx.doi.org/10.4028/www.scientific.net/amm.687-691.856.
Der volle Inhalt der QuelleAbdulsattar, Ruaa Alaadeen, und Nada Hussein M. Ali. „Lookup Table Algorithm for Error Correction in Color Images“. JOIV : International Journal on Informatics Visualization 2, Nr. 2 (03.03.2018): 63. http://dx.doi.org/10.30630/joiv.2.2.113.
Der volle Inhalt der QuelleMorisette, Jeffrey T., Louis Giglio, Ivan Csiszar, Alberto Setzer, Wilfrid Schroeder, Douglas Morton und Christopher O. Justice. „Validation of MODIS Active Fire Detection Products Derived from Two Algorithms“. Earth Interactions 9, Nr. 9 (01.07.2005): 1–25. http://dx.doi.org/10.1175/ei141.1.
Der volle Inhalt der QuelleNguyen, G. D. „Error-detection codes: algorithms and fast implementation“. IEEE Transactions on Computers 54, Nr. 1 (Januar 2005): 1–11. http://dx.doi.org/10.1109/tc.2005.7.
Der volle Inhalt der QuelleToghuj, Wael, und Ghazi I. Alkhatib. „Improved Algorithm for Error Correction“. International Journal of Information Technology and Web Engineering 6, Nr. 1 (Januar 2011): 1–12. http://dx.doi.org/10.4018/jitwe.2011010101.
Der volle Inhalt der QuelleKari, Lila, Stavros Konstantinidis, Steffen Kopecki und Meng Yang. „Efficient Algorithms for Computing the Inner Edit Distance of a Regular Language via Transducers“. Algorithms 11, Nr. 11 (23.10.2018): 165. http://dx.doi.org/10.3390/a11110165.
Der volle Inhalt der QuelleZhu, Yongkuan, Gurjot Singh Gaba, Fahad M. Almansour, Roobaea Alroobaea und Mehedi Masud. „Application of data mining technology in detecting network intrusion and security maintenance“. Journal of Intelligent Systems 30, Nr. 1 (01.01.2021): 664–76. http://dx.doi.org/10.1515/jisys-2020-0146.
Der volle Inhalt der QuelleSong, Yan, Haixu Tang, Haoyu Zhang und Qin Zhang. „Overlap detection on long, error-prone sequencing reads via smooth q-gram“. Bioinformatics 36, Nr. 19 (20.04.2020): 4838–45. http://dx.doi.org/10.1093/bioinformatics/btaa252.
Der volle Inhalt der QuelleChen, Xin W., und Shimon Y. Nof. „Error Detection and Prediction Algorithms: Application in Robotics“. Journal of Intelligent and Robotic Systems 48, Nr. 2 (05.01.2007): 225–52. http://dx.doi.org/10.1007/s10846-006-9094-9.
Der volle Inhalt der QuelleJUNG, YUNHO, SEONGJOO LEE und JAESEOK KIM. „DESIGN AND IMPLEMENTATION OF SYMBOL DETECTOR FOR MIMO SPATIAL MULTIPLEXING SYSTEMS“. Journal of Circuits, Systems and Computers 20, Nr. 04 (Juni 2011): 727–39. http://dx.doi.org/10.1142/s0218126611007578.
Der volle Inhalt der QuelleDissertationen zum Thema "Error detection algorithms"
Pazaitis, Dimitrios I. „Performance improvement in adaptive signal processing algorithms“. Thesis, Imperial College London, 1996. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.368771.
Der volle Inhalt der QuelleO'Connell, Jeffrey R. „Algorithms for linkage analysis, error detection and haplotyping in pedigrees“. Thesis, University of Oxford, 2000. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.325622.
Der volle Inhalt der QuelleSantos, Fernando Fernandes dos. „Reliability evaluation and error mitigation in pedestrian detection algorithms for embedded GPUs“. reponame:Biblioteca Digital de Teses e Dissertações da UFRGS, 2017. http://hdl.handle.net/10183/159210.
Der volle Inhalt der QuellePedestrian detection reliability is a fundamental problem for autonomous or aided driving. Methods that use object detection algorithms such as Histogram of Oriented Gradients (HOG) or Convolutional Neural Networks (CNN) are today very popular in automotive applications. Embedded Graphics Processing Units (GPUs) are exploited to make object detection in a very efficient manner. Unfortunately, GPUs architecture has been shown to be particularly vulnerable to radiation-induced failures. This work presents an experimental evaluation and analytical study of the reliability of two types of object detection algorithms: HOG and CNNs. This research aim is not just to quantify but also to qualify the radiation-induced errors on object detection applications executed in embedded GPUs. HOG experimental results were obtained using two different architectures of embedded GPUs (Tegra and AMD APU), each exposed for about 100 hours to a controlled neutron beam at Los Alamos National Lab (LANL). Precision and Recall metrics are considered to evaluate the error criticality. The reported analysis shows that, while being intrinsically resilient (65% to 85% of output errors only slightly impact detection), HOG experienced some particularly critical errors that could result in undetected pedestrians or unnecessary vehicle stops. This works also evaluates the reliability of two Convolutional Neural Networks for object detection: You Only Look Once (YOLO) and Faster RCNN. Three different GPU architectures were exposed to controlled neutron beams (Kepler, Maxwell, and Pascal) detecting objects in both Caltech and Visual Object Classes data sets. By analyzing the neural network corrupted output, it is possible to distinguish between tolerable errors and critical errors, i.e., errors that could impact detection. Additionally, extensive GDB-level and architectural-level fault-injection campaigns were performed to identify HOG and YOLO critical procedures. Results show that not all stages of object detection algorithms are critical to the final classification reliability. Thanks to the fault injection analysis it is possible to identify HOG and Darknet portions that, if hardened, are more likely to increase reliability without introducing unnecessary overhead. The proposed HOG hardening strategy is able to detect up to 70% of errors with a 12% execution time overhead.
Lee, Ho. „Algorithms to Improve the Quality of Freeway Traffic Detector Data“. The Ohio State University, 2012. http://rave.ohiolink.edu/etdc/view?acc_num=osu1345522267.
Der volle Inhalt der QuelleHua, Nan. „Space-efficient data sketching algorithms for network applications“. Diss., Georgia Institute of Technology, 2012. http://hdl.handle.net/1853/44899.
Der volle Inhalt der QuelleValent, Adam. „Jednosměrná sériová komunikace laserem na větší vzdálenost“. Master's thesis, Vysoké učení technické v Brně. Fakulta elektrotechniky a komunikačních technologií, 2021. http://www.nusl.cz/ntk/nusl-442524.
Der volle Inhalt der QuelleFeng, Jingbin. „Quasi-Static Deflection Compensation Control of Flexible Manipulator“. PDXScholar, 1993. https://pdxscholar.library.pdx.edu/open_access_etds/4759.
Der volle Inhalt der QuelleXie, Yichen. „Static detection of software errors precise and scalable algorithms for automatic detection of software errors“. Saarbrücken VDM, Müller, 2006. http://deposit.d-nb.de/cgi-bin/dokserv?id=2991792&prov=M&dok_var=1&dok_ext=htm.
Der volle Inhalt der QuelleKapfunde, Goodwell. „Near-capacity sphere decoder based detection schemes for MIMO wireless communication systems“. Thesis, University of Hertfordshire, 2013. http://hdl.handle.net/2299/11350.
Der volle Inhalt der QuelleSevim, Alaettin. „Including state excitation in the fixed-interval smoothing algorithm and implementation of the maneuver detection method using error residuals“. Thesis, Monterey, California : Naval Postgraduate School, 1990. http://handle.dtic.mil/100.2/ADA246336.
Der volle Inhalt der QuelleThesis Advisor: Titus, Harold A. Second Reader: Burl, Jeff. "December 1990." Description based on title screen as viewed on April 2, 2010. DTIC Identifier(s): Noise processing, maneuver detection. Author(s) subject terms: Kalman filter, smoothing, noise process, maneuver detection. Includes bibliographical references (p. 98-99). Also available in print.
Bücher zum Thema "Error detection algorithms"
International Conference Arithmetic, Geometry, Cryptography and Coding Theory (14th 2013 Marseille, France). Algorithmic arithmetic, geometry, and coding theory: 14th International Conference, Arithmetic, Geometry, Cryptography, and Coding Theory, June 3-7 2013, CIRM, Marseille, France. Herausgegeben von Ballet Stéphane 1971 editor, Perret, M. (Marc), 1963- editor und Zaytsev, Alexey (Alexey I.), 1976- editor. Providence, Rhode Island: American Mathematical Society, 2015.
Den vollen Inhalt der Quelle findenJohn F. Kennedy Space Center., Hrsg. Development of algorithms and error analyses for the short baseline lightning detection and ranging system. Kennedy Space Center, Fla: National Aeronautics and Space Administration, John F. Kennedy Space Center, 1998.
Den vollen Inhalt der Quelle findenJohn F. Kennedy Space Center., Hrsg. Development of algorithms and error analyses for the short baseline lightning detection and ranging system. Kennedy Space Center, Fla: National Aeronautics and Space Administration, John F. Kennedy Space Center, 1998.
Den vollen Inhalt der Quelle findenUnited States. National Aeronautics and Space Administration., Hrsg. Minimal time change detection algorithm for reconfigurable control system and application to aerospace. [Los Angeles, CA: University of California, 1994.
Den vollen Inhalt der Quelle findenBuchteile zum Thema "Error detection algorithms"
Chen, Dewang, und Ruijun Cheng. „Error Data Detection“. In Intelligent Processing Algorithms and Applications for GPS Positioning Data of Qinghai-Tibet Railway, 87–102. Berlin, Heidelberg: Springer Berlin Heidelberg, 2019. http://dx.doi.org/10.1007/978-3-662-58970-0_5.
Der volle Inhalt der QuelleLafond, Manuel, Krister M. Swenson und Nadia El-Mabrouk. „Error Detection and Correction of Gene Trees“. In Models and Algorithms for Genome Evolution, 261–85. London: Springer London, 2013. http://dx.doi.org/10.1007/978-1-4471-5298-9_12.
Der volle Inhalt der QuelleWeimer, Westley, und George C. Necula. „Mining Temporal Specifications for Error Detection“. In Tools and Algorithms for the Construction and Analysis of Systems, 461–76. Berlin, Heidelberg: Springer Berlin Heidelberg, 2005. http://dx.doi.org/10.1007/978-3-540-31980-1_30.
Der volle Inhalt der QuelleMethods, Algebraic, und F. S. Vainstein. „Error detection and correction in numerical computations“. In Applied Algebra, Algebraic Algorithms and Error-Correcting Codes, 456–64. Berlin, Heidelberg: Springer Berlin Heidelberg, 1991. http://dx.doi.org/10.1007/3-540-54522-0_133.
Der volle Inhalt der QuelleShandilya, Suyash. „Minimising Acquisition Maximising Inference—A Demonstration on Print Error Detection“. In Algorithms for Intelligent Systems, 413–23. Singapore: Springer Singapore, 2020. http://dx.doi.org/10.1007/978-981-15-4936-6_47.
Der volle Inhalt der QuelleFang, Wentao, Jingjing Gu, Zujia Yan und Qiuhong Wang. „SDC Error Detection by Exploring the Importance of Instruction Features“. In Wireless Algorithms, Systems, and Applications, 351–63. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-85928-2_28.
Der volle Inhalt der QuelleHolmquist, Lawrence P., und L. L. Kinney. „Concurrent error detection in sequential circuits using convolutional codes“. In Applied Algebra, Algebraic Algorithms and Error-Correcting Codes, 183–94. Berlin, Heidelberg: Springer Berlin Heidelberg, 1991. http://dx.doi.org/10.1007/3-540-54522-0_107.
Der volle Inhalt der QuelleChicano, Francisco, Marco Ferreira und Enrique Alba. „Comparing Metaheuristic Algorithms for Error Detection in Java Programs“. In Search Based Software Engineering, 82–96. Berlin, Heidelberg: Springer Berlin Heidelberg, 2011. http://dx.doi.org/10.1007/978-3-642-23716-4_11.
Der volle Inhalt der QuelleSun, Tao, Jing Zhang und Wenjie Zhong. „Concurrent Software Fine-Coarse-Grained Automatic Modeling Method for Algorithm Error Detection“. In Algorithms and Architectures for Parallel Processing, 615–23. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-38961-1_52.
Der volle Inhalt der QuelleMargaria, Tiziana. „Fully automatic verification and error detection for parameterized iterative sequential circuits“. In Tools and Algorithms for the Construction and Analysis of Systems, 258–77. Berlin, Heidelberg: Springer Berlin Heidelberg, 1996. http://dx.doi.org/10.1007/3-540-61042-1_49.
Der volle Inhalt der QuelleKonferenzberichte zum Thema "Error detection algorithms"
Pfeifer, Petr, und H. T. Vierhaus. „Iterative error correction with double/triple error detection“. In 2016 Signal Processing: Algorithms, Architectures, Arrangements and Applications (SPA). IEEE, 2016. http://dx.doi.org/10.1109/spa.2016.7763579.
Der volle Inhalt der QuelleHalunga, Simona, Octavian Fratu und Dragos Vizireanu. „Error Probability Evaluation for Multiuser Detection Algorithms“. In 2007 8th International Conference on Telecommunications in Modern Satellite, Cable and Broadcasting Services. IEEE, 2007. http://dx.doi.org/10.1109/telsks.2007.4375964.
Der volle Inhalt der QuelleNikodem, Maciej. „Error Prevention, Detection and Diffusion Algorithms for Cryptographic Hardware“. In 2nd International Conference on Dependability of Computer Systems (DepCoS-RELCOMEX '07). IEEE, 2007. http://dx.doi.org/10.1109/depcos-relcomex.2007.20.
Der volle Inhalt der QuelleHanayama, Ryohei, und Kenichi Hibino. „Error estimation of phase detection algorithms and comparison of window functions“. In SPIE Optical Engineering + Applications, herausgegeben von Joanna Schmit, Katherine Creath, Catherine E. Towers und Jan Burke. SPIE, 2012. http://dx.doi.org/10.1117/12.929785.
Der volle Inhalt der QuelleAnitha, Kumari A., und Maya V. Karki. „Iris recognition system with error detection and reconstruction algorithms for template security“. In 2017 2nd IEEE International Conference on Recent Trends in Electronics, Information & Communication Technology (RTEICT). IEEE, 2017. http://dx.doi.org/10.1109/rteict.2017.8256713.
Der volle Inhalt der QuelleJoerger, Mathieu, Jason Neale, Boris Pervan und Seebany Datta-Barua. „Measurement error models and fault-detection algorithms for multi-constellation navigation systems“. In 2010 IEEE/ION Position, Location and Navigation Symposium - PLANS 2010. IEEE, 2010. http://dx.doi.org/10.1109/plans.2010.5507228.
Der volle Inhalt der QuelleKaraklajic, Dusko, Junfeng Fan und Ingrid Verbauwhede. „A systematic M safe-error detection in hardware implementations of cryptographic algorithms“. In 2012 IEEE International Symposium on Hardware-Oriented Security and Trust (HOST). IEEE, 2012. http://dx.doi.org/10.1109/hst.2012.6224327.
Der volle Inhalt der QuelleP., Sujith, A. P. Prathosh, A. G. Ramakrishnan und Prasanta Kumar Ghosh. „An error correction scheme for GCI detection algorithms using pitch smoothness criterion“. In Interspeech 2015. ISCA: ISCA, 2015. http://dx.doi.org/10.21437/interspeech.2015-661.
Der volle Inhalt der QuelleCapponi, Stefano, und Chiazor Nwachukwu. „Data Analytics Software for Automatic Detection of Anomalies in Well Testing“. In SPE Offshore Europe Conference & Exhibition. SPE, 2021. http://dx.doi.org/10.2118/205456-ms.
Der volle Inhalt der QuelleDePold, Hans R., Ravi Rajamani, William H. Morrison und Krishna R. Pattipati. „A Unified Metric for Fault Detection and Isolation in Engines“. In ASME Turbo Expo 2006: Power for Land, Sea, and Air. ASMEDC, 2006. http://dx.doi.org/10.1115/gt2006-91095.
Der volle Inhalt der QuelleBerichte der Organisationen zum Thema "Error detection algorithms"
Varshney, Pramod K., und Wael Hashlamoun. ALGORITHMS FOR SENSOR FUSION: Applications of Distance Measures and Probability of Error Bounds to Distributed. Detection Systems. Volume 2. Fort Belvoir, VA: Defense Technical Information Center, Dezember 1991. http://dx.doi.org/10.21236/ada254634.
Der volle Inhalt der Quelle