Inhaltsverzeichnis
Auswahl der wissenschaftlichen Literatur zum Thema „Equivariant quantization“
Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an
Machen Sie sich mit den Listen der aktuellen Artikel, Bücher, Dissertationen, Berichten und anderer wissenschaftlichen Quellen zum Thema "Equivariant quantization" bekannt.
Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.
Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.
Zeitschriftenartikel zum Thema "Equivariant quantization"
Bieliavsky, Pierre, Victor Gayral, Sergey Neshveyev und Lars Tuset. „On deformations of C∗-algebras by actions of Kählerian Lie groups“. International Journal of Mathematics 27, Nr. 03 (März 2016): 1650023. http://dx.doi.org/10.1142/s0129167x16500233.
Der volle Inhalt der QuelleLecomte, Pierre B. A. „Towards Projectively Equivariant Quantization“. Progress of Theoretical Physics Supplement 144 (01.12.2001): 125–32. http://dx.doi.org/10.1143/ptps.144.125.
Der volle Inhalt der QuellePoncin, N., F. Radoux und R. Wolak. „Equivariant quantization of orbifolds“. Journal of Geometry and Physics 60, Nr. 9 (September 2010): 1103–11. http://dx.doi.org/10.1016/j.geomphys.2010.04.003.
Der volle Inhalt der QuellePFLAUM, M. J., H. B. POSTHUMA, X. TANG und H. H. TSENG. „ORBIFOLD CUP PRODUCTS AND RING STRUCTURES ON HOCHSCHILD COHOMOLOGIES“. Communications in Contemporary Mathematics 13, Nr. 01 (Februar 2011): 123–82. http://dx.doi.org/10.1142/s0219199711004142.
Der volle Inhalt der QuelleHawkins, Eli. „Quantization of Equivariant Vector Bundles“. Communications in Mathematical Physics 202, Nr. 3 (01.05.1999): 517–46. http://dx.doi.org/10.1007/s002200050594.
Der volle Inhalt der QuelleTang, Xiang, und Yi-Jun Yao. „K -theory of equivariant quantization“. Journal of Functional Analysis 266, Nr. 2 (Januar 2014): 478–86. http://dx.doi.org/10.1016/j.jfa.2013.10.005.
Der volle Inhalt der QuelleRogers, Alice. „Equivariant BRST quantization and reducible symmetries“. Journal of Physics A: Mathematical and Theoretical 40, Nr. 17 (11.04.2007): 4649–63. http://dx.doi.org/10.1088/1751-8113/40/17/016.
Der volle Inhalt der QuelleMichel, Jean-Philippe. „Conformally Equivariant Quantization for Spinning Particles“. Communications in Mathematical Physics 333, Nr. 1 (16.12.2014): 261–98. http://dx.doi.org/10.1007/s00220-014-2229-0.
Der volle Inhalt der QuelleDuval, Christian, Pierre Lecomte und Valentin Ovsienko. „Conformally equivariant quantization: existence and uniqueness“. Annales de l’institut Fourier 49, Nr. 6 (1999): 1999–2029. http://dx.doi.org/10.5802/aif.1744.
Der volle Inhalt der QuelleDonin, J., und A. Mudrov. „Reflection equation, twist, and equivariant quantization“. Israel Journal of Mathematics 136, Nr. 1 (Dezember 2003): 11–28. http://dx.doi.org/10.1007/bf02807191.
Der volle Inhalt der QuelleDissertationen zum Thema "Equivariant quantization"
Tizzano, Luigi. „Geometry of BV quantization and Mathai-Quillen formalism“. Master's thesis, Alma Mater Studiorum - Università di Bologna, 2013. http://amslaurea.unibo.it/5941/.
Der volle Inhalt der QuelleMarie, Valentin. „représentations projectives et groupes quantiques localement compacts“. Electronic Thesis or Diss., Reims, 2024. http://www.theses.fr/2024REIMS012.
Der volle Inhalt der QuelleThis thesis exploits a result by De Commer to produce locally compact quantum groups (in the sense of von Neumann algebras) from a classical group. It involves deforming the von Neumann bialgebra of a locally compact group using a unitary dual 2-cocycle. The main objective of this thesis is to construct such dual 2-cocycles, by generalizing to the case of projective representations an article byBieliavsky, Gayral, Neshveyev, Tuset.The groups of interest to us are semidirect products that must satisfy the so-called dual orbit condition and have a non-trivial cohomology in degree 2. We construct a Kohn-Nirenberg type quantization from a projective representation. The star-product of this quantization allows us to formulate a naive dual 2-cocycle. We achieve a rigorous construction of this dual 2-cocycle by introducing a G-Galois object.We then express the multiplicative unitary of the quantum group induced by the dual 2-cocycle. By applying a result of Baaj and Skandalis on pentagonal transformations, we obtain from the multiplicative unitary that this quantum group is isomorphic to a cocycle bicrossed product. The multiplicative unitary induces a so-called pentagonal cohomology and a group morphism that partially describes this cohomology. We study this morphism.We then propose a setup altering the dual orbit condition, in order to study a Weyl type quantization constructed using the same representation. Finally, we present the example of a dual 2-cocycle proposed by Jondreville. We express the multiplicative unitary of the quantum group induced by this dual 2-cocycle
Fitzpatrick, Daniel. „Almost CR Quantization via the Index of Transversally Elliptic Dirac Operators“. Thesis, 2009. http://hdl.handle.net/1807/19033.
Der volle Inhalt der QuelleBücher zum Thema "Equivariant quantization"
Argentina) Luis Santaló Winter School-CIMPA Research School Topics in Noncommutative Geometry (3rd 2010 Buenos Aires. Topics in noncommutative geometry: Third Luis Santaló Winter School-CIMPA Research School Topics in Noncommutative Geometry, Universidad de Buenos Aires, Buenos Aires, Argentina, July 26-August 6, 2010. Herausgegeben von Cortiñas, Guillermo, editor of compilation. Providence, RI: American Mathematical Society, 2012.
Den vollen Inhalt der Quelle findenThe [ Gamma]-equivariant form of the Berezin quantization of the upper half plane. Providence, R.I: American Mathematical Society, 1998.
Den vollen Inhalt der Quelle findenBuchteile zum Thema "Equivariant quantization"
Duval, Christian, Pierre B. A. Lecomte und Valentin Ovsienko. „Methods of Equivariant Quantization“. In Noncommutative Differential Geometry and Its Applications to Physics, 1–12. Dordrecht: Springer Netherlands, 2001. http://dx.doi.org/10.1007/978-94-010-0704-7_1.
Der volle Inhalt der QuelleVergne, Michèle. „Geometric Quantization and Equivariant Cohomology“. In First European Congress of Mathematics Paris, July 6–10, 1992, 249–95. Basel: Birkhäuser Basel, 1994. http://dx.doi.org/10.1007/978-3-0348-9328-2_8.
Der volle Inhalt der QuelleVergne, Michèle. „Geometric Quantization and Equivariant Cohomology“. In First European Congress of Mathematics, 249–95. Basel: Birkhäuser Basel, 1994. http://dx.doi.org/10.1007/978-3-0348-9110-3_8.
Der volle Inhalt der QuelleMatsuura, Shun, und Hiroshi Kurata. „Statistical Estimation of Quantization for Probability Distributions: Best Equivariant Estimator of Principal Points“. In Machine Learning, Optimization, and Data Science, 430–41. Cham: Springer International Publishing, 2022. http://dx.doi.org/10.1007/978-3-030-95467-3_31.
Der volle Inhalt der QuelleKonferenzberichte zum Thema "Equivariant quantization"
Michel, J. Ph, Piotr Kielanowski, Victor Buchstaber, Anatol Odzijewicz, Martin Schlichenmaier und Theodore Voronov. „Equivariant Quantization of Spin Systems“. In XXIX WORKSHOP ON GEOMETRIC METHODS IN PHYSICS. AIP, 2010. http://dx.doi.org/10.1063/1.3527405.
Der volle Inhalt der QuelleShin, Woncheol, Gyubok Lee, Jiyoung Lee, Eunyi Lyou, Joonseok Lee und Edward Choi. „Exploration Into Translation-Equivariant Image Quantization“. In ICASSP 2023 - 2023 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP). IEEE, 2023. http://dx.doi.org/10.1109/icassp49357.2023.10096052.
Der volle Inhalt der QuelleBouwknegt, Peter, Alan Carey und Rishni Ratnam. „Recent Advances in the Study of the Equivariant Brauer Group“. In Proceedings of the Noncommutative Geometry and Physics 2008, on K-Theory and D-Branes & Proceedings of the RIMS Thematic Year 2010 on Perspectives in Deformation Quantization and Noncommutative Geometry. WORLD SCIENTIFIC, 2013. http://dx.doi.org/10.1142/9789814425018_0012.
Der volle Inhalt der Quelle