Inhaltsverzeichnis
Auswahl der wissenschaftlichen Literatur zum Thema „Équations différentielles fonctionnelles neutres“
Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an
Machen Sie sich mit den Listen der aktuellen Artikel, Bücher, Dissertationen, Berichten und anderer wissenschaftlichen Quellen zum Thema "Équations différentielles fonctionnelles neutres" bekannt.
Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.
Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.
Zeitschriftenartikel zum Thema "Équations différentielles fonctionnelles neutres"
Appell, Jürgen, und Espedito de Pascale. „Theoremes de Bornage Pour L'Operateur de Nemyckii Dans Les Espaces Ideaux“. Canadian Journal of Mathematics 38, Nr. 6 (01.12.1986): 1338–55. http://dx.doi.org/10.4153/cjm-1986-068-3.
Der volle Inhalt der QuelleDissertationen zum Thema "Équations différentielles fonctionnelles neutres"
Sidki, Omar. „Une approche par la théorie des semigroupes non linéaires de la résolution d'une classe d'équations différentielles fonctionnelles de type neutre : application à une équation de dynamique de population“. Pau, 1994. http://www.theses.fr/1994PAUU3024.
Der volle Inhalt der QuelleBenarab, Amina. „Contribution to the partial pole placement problem for some classes of time-delay systems with applications“. Electronic Thesis or Diss., université Paris-Saclay, 2022. http://www.theses.fr/2022UPAST136.
Der volle Inhalt der QuelleOne of the questions of ongoing interest for linear time-delay systems is to determine conditions on the equation's parameters that guarantee the exponential stability of solutions. In general, it is quite a challenge to establish conditions on the parameters of the system in order to guarantee such a stability. One of the effective approaches in the stability analysis of time-delay systems is the frequency domain approach. In the Laplace domain, the stability analysis amounts to study the distribution of characteristic quasipolynomial functions' roots. Once the stability of a delay system has been proven, it is important to characterize the exponential decay rate of the solutions of such systems. In the frequency domain, this decay rate corresponds to the dominant spectral value. Recent works emphasized the link between maximal multiplicity and dominant roots. Indeed, conditions for a given multiple root to be dominant are investigated, this property is known as Multiplicity-Induced-Dominancy (MID). In this dissertation, three topics related to the MID property are investigated. Firstly, the effect of multiple roots with admissible multiplicities exhibiting, under appropriate conditions, the validity of the MID property for second-order neutral time-delay differential equations with a single delay is explored. The stabilization of the classical oscillator benefits from the obtained results. Secondly, the effects of time-delays on the stability of Unmanned Aerial Vehicles (UAVs) is exploited. In this regard, a symbolic/numeric application of the MID property in the control of UAV rotorcrafts featuring time-delays is provided. Lastly, the stabilization of a rolling balance board by means of the MID property is considered
Binda, Olivier. „Suite auto-décrite de Golomb et équations fonctionnelles associées“. Nancy 1, 2004. http://docnum.univ-lorraine.fr/public/SCD_T_2004_0167_BINDA.pdf.
Der volle Inhalt der QuelleIn this thesis, we study the asymptotic bahavior of Golomb's sequence u={1,2,2,3,3,4,4,4,5,5,5,6,6,6,6,. . . }, which is the only non-decreasing sequence of integers with u(1)=1 and where u(n) is the number of occurences of n in the sequence u={u(1),u(2),. . . }. We prove that each solution of the differential equation f'(x)=1/f(f(x)) admits an asymptotic development and we obtain relations between it's coefficients. We compare Golomb'sequence to one of these solutions and we prove that Golomb's sequence admits such an asymptotic development too
Béraud, Jean-François. „Étude topologique des cartes, équations fonctionnelles et énumérations“. Université de Marne-la-Vallée, 1998. http://www.theses.fr/1998MARN0038.
Der volle Inhalt der QuelleLakrib, Mustapha. „Stroboscopie et moyennisation dans les équations différentielles fonctionnelles à retard“. Phd thesis, Université de Haute Alsace - Mulhouse, 2004. http://tel.archives-ouvertes.fr/tel-00444149.
Der volle Inhalt der QuelleHargé, Gilles. „Régulatité de certaines fonctionnelles sur l'espace de Wiener“. Evry-Val d'Essonne, 1993. http://www.theses.fr/1993EVRY0001.
Der volle Inhalt der QuelleSamassi, Lassana. „Calcul des variations des fonctionnelles à arguments déviés“. Paris 9, 2004. https://portail.bu.dauphine.fr/fileviewer/index.php?doc=2004PA090027.
Der volle Inhalt der QuelleThis thesis deals with problems of calculus of variation for functionals with deviating arguments arising for instance in optimal control problems and variational problems with deviating arguments. In the first chapter, we establish existence results for monodimensional problems. We show that the direct method of calculus of variation is suitable for problems with deviating arguments in a functional space as Sobolev space with a weight. The case of vector functions and several deviating functions is studied. The second chapter deals with a general idea to state necessary optimality conditions for problems of variational calculus or optimal control problems with deviating arguments, some regularity results are established. In the third chapter, we establish existence results for free and fix discontinuities problems with deviating arguments. The last chapter is devoted to the resolution of a nonlinear elliptic equation with deviating arguments. We prove existence and uniqueness results by using the Schauder fixed point theorem
Cherif, Abdoul Aziz. „Contribution à la recherche de solutions périodiques d'équations différentielles fonctionnelles et de systèmes ordinaires forcés“. Pau, 1990. http://www.theses.fr/1990PAUU3010.
Der volle Inhalt der QuelleCamar-Eddine, Mohamed. „Fermeture des fonctionnelles de diffusion et de l'élasticité linéaire pour la topologie de la Mosco-convergence“. Toulon, 2002. http://tel.archives-ouvertes.fr/tel-00006576.
Der volle Inhalt der QuelleThe purpose of this thesis is to characterize all possible Mosco-limits of sequences of diffusion functionals or isotropic elasticity ones. It is a well-known fact that, when the diffusion coefficients in the scalar case, or the elasticity coefficients in the vectorial one, are not uniformly bounded, non local terms and killing terms can appear in the limit functional, despite the strong local nature of any element of those sequences. In the vectorial case, the limit functional can even involve some second derivative of the displacement. From a mechanical point of view, the effective properties of a composite material can differ fundamentally from those of its components. Umberto Mosco has shown that any limit of a sequence of diffusion functionals has to be a Dirichlet form. The contribution of the first part of this work provides a positive answer to the inverse problem. We show that any Dirichlet form is the Mosco-limit of some sequence of diffusion functionals. In a crucial step, we exhibit an explicit composite diffusive material, the effective properties of which contain an elementary non-local interaction. Then, using a step by step approach, we reach at each step a more general non-local interaction until obtaining all the Dirichlet forms. The second part of this work deals with the vectorial case. We show that the Mosco-closure of the set of isotropic elasticity functionals coincides with the set of all non-negative lower semi-continuous quadratic functionals which are objective. The proof of this result, which is far from being a simple generalisation of the scalar case, is based, at the start, on a result which is comparable to the scalar case. Then a fundamentally different approach is necessary
Mandallena, Jean-Philippe. „Contributions à une approche générale de la régularisation variationnelle de fonctionnelles intégrales“. Montpellier 2, 1999. http://www.theses.fr/1999MON20083.
Der volle Inhalt der QuelleBücher zum Thema "Équations différentielles fonctionnelles neutres"
R, Grace Said, und O'Regan Donal, Hrsg. Oscillation theory for second order dynamic equations. London: Taylor & Francis, 2003.
Den vollen Inhalt der Quelle finden1966-, Bohner Martin, und Li Wan-Tong, Hrsg. Nonoscillation and oscillation: Theory for functional differential equations. New York: Marcel Dekker, 2004.
Den vollen Inhalt der Quelle findenR, Nosov V., Hrsg. Stability of functional differential equations. London: Academic, 1986.
Den vollen Inhalt der Quelle finden1957-, Simonov P. M., Hrsg. Stability of differential equations with aftereffect. New York: Taylor & Francis, 2003.
Den vollen Inhalt der Quelle findenStamova, Ivanka, und Gani Stamov. Functional and Impulsive Differential Equations of Fractional Order: Qualitative Analysis and Applications. Taylor & Francis Group, 2017.
Den vollen Inhalt der Quelle findenStamova, Ivanka, und Gani T. Stamov. Functional and Impulsive Differential Equations of Fractional Order. Taylor & Francis Group, 2021.
Den vollen Inhalt der Quelle findenStamova, Ivanka, und Gani Stamov. Functional and Impulsive Differential Equations of Fractional Order: Qualitative Analysis and Applications. Taylor & Francis Group, 2017.
Den vollen Inhalt der Quelle findenFunctional and Impulsive Differential Equations of Fractional Order: Qualitative Analysis and Applications. Taylor & Francis Group, 2016.
Den vollen Inhalt der Quelle findenOscillation Nonoscillation Stability and Asymptotic Properties for Second and Higher Order Functional Differential Equations. Taylor & Francis Group, 2020.
Den vollen Inhalt der Quelle findenDomoshnitsky, Alexander, Leonid Berezansky und Roman Koplatadze. Oscillation, Nonoscillation, Stability and Asymptotic Properties for Second and Higher Order Functional Differential Equations. Taylor & Francis Group, 2020.
Den vollen Inhalt der Quelle finden