Dissertationen zum Thema „Equation“
Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an
Machen Sie sich mit Top-50 Dissertationen für die Forschung zum Thema "Equation" bekannt.
Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.
Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.
Sehen Sie die Dissertationen für verschiedene Spezialgebieten durch und erstellen Sie Ihre Bibliographie auf korrekte Weise.
Thompson, Jeremy R. (Jeremy Ray). „Physical Motivation and Methods of Solution of Classical Partial Differential Equations“. Thesis, University of North Texas, 1995. https://digital.library.unt.edu/ark:/67531/metadc277898/.
Der volle Inhalt der QuelleHoward, Tamani M. „Hyperbolic Monge-Ampère Equation“. Thesis, University of North Texas, 2006. https://digital.library.unt.edu/ark:/67531/metadc5322/.
Der volle Inhalt der QuelleVong, Seak Weng. „Two problems on the Navier-Stokes equations and the Boltzmann equation /“. access full-text access abstract and table of contents, 2005. http://libweb.cityu.edu.hk/cgi-bin/ezdb/thesis.pl?phd-ma-b19885805a.pdf.
Der volle Inhalt der Quelle"Submitted to Department of Mathematics in partial fulfillment of the requirements for the degree of Doctor of Philosophy" Includes bibliographical references (leaves 72-77)
Guan, Meijiao. „Global questions for evolution equations Landau-Lifshitz flow and Dirac equation“. Thesis, University of British Columbia, 2009. http://hdl.handle.net/2429/22491.
Der volle Inhalt der QuelleJumarhon, Bartur. „The one dimensional heat equation and its associated Volterra integral equations“. Thesis, University of Strathclyde, 1994. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.342381.
Der volle Inhalt der QuelleBanerjee, Paromita. „Numerical Methods for Stochastic Differential Equations and Postintervention in Structural Equation Models“. Case Western Reserve University School of Graduate Studies / OhioLINK, 2021. http://rave.ohiolink.edu/etdc/view?acc_num=case1597879378514956.
Der volle Inhalt der QuelleWang, Jun. „Integral Equation Methods for the Heat Equation in Moving Geometry“. Thesis, New York University, 2017. http://pqdtopen.proquest.com/#viewpdf?dispub=10618746.
Der volle Inhalt der QuelleMany problems in physics and engineering require the solution of the heat equation in moving geometry. Integral representations are particularly appropriate in this setting since they satisfy the governing equation automatically and, in the homogeneous case, require the discretization of the space-time boundary alone. Unlike methods based on direct discretization of the partial differential equation, they are unconditonally stable. Moreover, while a naive implementation of this approach is impractical, several efforts have been made over the past few years to reduce the overall computational cost. Of particular note are Fourier-based methods which achieve optimal complexity so long as the time step Δt is of the same order as Δx, the mesh size in the spatial variables. As the time step goes to zero, however, the cost of the Fourier-based fast algorithms grows without bound. A second difficulty with existing schemes has been the lack of efficient, high-order local-in-time quadratures for layer heat potentials.
In this dissertation, we present a new method for evaluating heat potentials that makes use of a spatially adaptive mesh instead of a Fourier series, a new version of the fast Gauss transform, and a new hybrid asymptotic/numerical method for local-in-time quadrature. The method is robust and efficient for any Δt, with essentially optimal computational complexity. We demonstrate its performance with numerical examples and discuss its implications for subsequent work in diffusion, heat flow, solidification and fluid dynamics.
Grundström, John. „The Sustainability Equation“. Thesis, Umeå universitet, Arkitekthögskolan vid Umeå universitet, 2016. http://urn.kb.se/resolve?urn=urn:nbn:se:umu:diva-133151.
Der volle Inhalt der QuelleGylys-Colwell, Frederick Douglas. „An inverse problem for the anisotropic time independent wave equation /“. Thesis, Connect to this title online; UW restricted, 1993. http://hdl.handle.net/1773/5726.
Der volle Inhalt der QuelleShedlock, Andrew James. „A Numerical Method for solving the Periodic Burgers' Equation through a Stochastic Differential Equation“. Thesis, Virginia Tech, 2021. http://hdl.handle.net/10919/103947.
Der volle Inhalt der QuelleMaster of Science
Burgers equation is a Partial Differential Equation (PDE) used to model how fluids evolve in time based on some initial condition and viscosity parameter. This viscosity parameter helps describe how the energy in a fluid dissipates. When studying partial differential equations, it is often hard to find a closed form solution to the problem, so we often approximate the solution with numerical methods. As our viscosity parameter approaches 0, many numerical methods develop problems and may no longer accurately compute the solution. Using random variables, we develop an approximation algorithm and test our numerical method on various types of initial conditions with small viscosity coefficients.
Rogers, James W. Jr Sheng Qin. „Adaptive methods for the Helmholtz equation with discontinuous coefficients at an interface“. Waco, Tex. : Baylor University, 2007. http://hdl.handle.net/2104/5122.
Der volle Inhalt der QuelleMoyano, Garcia Iván. „Controllability of of some kinetic equations, of parabolic degenerated equations and of the Schrödinger equation via domain transformation“. Thesis, Université Paris-Saclay (ComUE), 2016. http://www.theses.fr/2016SACLX062/document.
Der volle Inhalt der QuelleThis memoir presents the results obtained during my PhD, whose goal is the study of the controllability of some Partial Differential Equations.The first part of this thesis is concerned with the study of the controllability of some kinetic equations undergoing different regimes. Under a collisional regime, we study the controllability of the Kolmogorov equation, a particular case of kinetic Fokker-Planck equation, in the phase space $R^d times R^d$. We obtain the null-controllability of this equation thanks to the use of a spectral inequality associated to the Laplace operator in the whole space. Under a non-collisional regime, we study the controllability of two fluid-kinetic models, the Vlasov-Stokes system and the Vlasov-Navier-Stokes system, which exhibe nonlinearities due to the coupling terms. In those cases, the strategy relies on the Return method.In the second part, we study the controllability of a family of 1-D degenerate parabolic equations by the flatness method, which allows the construction of explicit controls.The third part is focused on the problem of the controllability of the Schrödinger equation via domain deformations, i.e., using the domain as a control. We obtain a result of this kind in the case of the two-dimensional unit disk, for radial data. Our methods are based on a local exact controllability result around a certain trajectory, obtained thanks to the Inverse Mapping theorem
Sjölander, Filip. „Numerical solutions to the Boussinesq equation and the Korteweg-de Vries equation“. Thesis, KTH, Skolan för teknikvetenskap (SCI), 2021. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-297544.
Der volle Inhalt der QuelleCOMI, GIULIA. „Two Fractional Stochastic Problems: Semi-Linear Heat Equation and Singular Volterra Equation“. Doctoral thesis, Università degli studi di Pavia, 2019. http://hdl.handle.net/11571/1292026.
Der volle Inhalt der QuelleVoss, Alexander. „Exact Riemann solution for the Euler equations with nonconvex and nonsmooth equation of state“. [S.l.] : [s.n.], 2005. http://deposit.ddb.de/cgi-bin/dokserv?idn=976791641.
Der volle Inhalt der QuelleMilitaru, Mariana. „Sur les equations de navier-stokes deterministes et stochastiques et sur une equation elliptique“. Clermont-Ferrand 2, 1997. http://www.theses.fr/1997CLF21922.
Der volle Inhalt der QuelleTemimi, Helmi. „A Discontinuous Galerkin Method for Higher-Order Differential Equations Applied to the Wave Equation“. Diss., Virginia Tech, 2008. http://hdl.handle.net/10919/26454.
Der volle Inhalt der QuellePh. D.
Ubostad, Nikolai Høiland. „The Infinity Laplace Equation“. Thesis, Norges teknisk-naturvitenskapelige universitet, Institutt for matematiske fag, 2013. http://urn.kb.se/resolve?urn=urn:nbn:no:ntnu:diva-20686.
Der volle Inhalt der QuelleShiono, Masaaki. „Investigations of Sayre's equation“. Thesis, University of York, 1989. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.329668.
Der volle Inhalt der QuelleCapone, Lauren. „The Hat Lady Equation“. ScholarWorks@UNO, 2014. http://scholarworks.uno.edu/td/1856.
Der volle Inhalt der QuelleKutahyalioglu, Aysen. „Oscillation Of Second Order Dynamic Equations On Time Scales“. Master's thesis, METU, 2004. http://etd.lib.metu.edu.tr/upload/12605380/index.pdf.
Der volle Inhalt der QuelleBeech, Robert. „Extensions of the nonlinear Schrödinger equation using Mathematica“. Thesis, View thesis, 2009. http://handle.uws.edu.au:8081/1959.7/46572.
Der volle Inhalt der QuelleKnaub, Karl R. „On the asymptotic behavior of internal layer solutions of advection-diffusion-reaction equations /“. Thesis, Connect to this title online; UW restricted, 2001. http://hdl.handle.net/1773/6772.
Der volle Inhalt der QuelleSelcuk, Aysun. „Oscillation Of Second Order Matrix Equations On Time Scales“. Master's thesis, METU, 2004. http://etd.lib.metu.edu.tr/upload/12605606/index.pdf.
Der volle Inhalt der QuelleSun, Weizhou. „LOCAL DISCONTINUOUS GALERKIN METHOD FOR KHOKHLOV-ZABOLOTSKAYA-KUZNETZOV EQUATION AND IMPROVED BOUSSINESQ EQUATION“. The Ohio State University, 2016. http://rave.ohiolink.edu/etdc/view?acc_num=osu1480327264817905.
Der volle Inhalt der QuelleDrake, Robert M. „Far field extrapolation technique using CHIEF enclosing sphere deduced pressures and velocities“. Thesis, Monterey, Calif. : Springfield, Va. : Naval Postgraduate School ; Available from National Technical Information Service, 2003. http://library.nps.navy.mil/uhtbin/hyperion-image/03Dec%5FDrake.pdf.
Der volle Inhalt der QuelleGrava, Tamara. „On the Cauchy Problem for the Whitham Equations“. Doctoral thesis, SISSA, 1998. http://hdl.handle.net/20.500.11767/4352.
Der volle Inhalt der QuelleDi, Cosmo Jonathan. „Nonlinear Schrödinger equation and Schrödinger-Poisson system in the semiclassical limit“. Doctoral thesis, Universite Libre de Bruxelles, 2011. http://hdl.handle.net/2013/ULB-DIPOT:oai:dipot.ulb.ac.be:2013/209863.
Der volle Inhalt der QuelleIn this thesis, we have been interested in standing waves, which satisfy an elliptic partial differential equation. When this equation is seen as a singularly perturbed problem, its solutions concentrate, in the sense that they converge uniformly to zero outside some concentration set, while they remain positive on this set.
We have obtained three kind of new results. Firstly, under symmetry assumptions, we have found solutions concentrating on a sphere. Secondly, we have obtained the same type of solutions for the Schrödinger-Poisson system. The method consists in applying the mountain pass theorem to a penalized problem. Thirdly, we have proved the existence of solutions of the nonlinear Schrödinger equation concentrating at a local maximum of the potential. These solutions are found by a more general minimax principle. Our results are characterized by very weak assumptions on the potential./
L'équation de Schrödinger non-linéaire apparaît dans différents domaines de la physique, par exemple dans la théorie des condensats de Bose-Einstein ou dans des modèles de propagation d'ondes. D'un point de vue mathématique, l'étude de cette équation est intéressante et délicate, notamment parce qu'elle peut posséder un ensemble très riche de solutions avec des comportements variés.
Dans cette thèse ,nous nous sommes intéressés aux ondes stationnaires, qui satisfont une équation aux dérivées partielles elliptique. Lorsque cette équation est vue comme un problème de perturbations singulières, ses solutions se concentrent, dans le sens où elles tendent uniformément vers zéro en dehors d'un certain ensemble de concentration, tout en restant positives sur cet ensemble.
Nous avons obtenu trois types de résultats nouveaux. Premièrement, sous des hypothèses de symétrie, nous avons trouvé des solutions qui se concentrent sur une sphère. Deuxièmement, nous avons obtenu le même type de solutions pour le système de Schrödinger-Poisson. La méthode consiste à appliquer le théorème du col à un problème pénalisé. Troisièmement, nous avons démontré l'existence de solutions de l'équation de Schrödinger non-linéaire qui se concentrent en un maximum local du potentiel. Ces solutions sont obtenues par un principe de minimax plus général. Nos résultats se caractérisent par des hypothèses très faibles sur le potentiel.
Doctorat en sciences, Spécialisation mathématiques
info:eu-repo/semantics/nonPublished
Beech, Robert. „Extensions of the nonlinear Schrödinger equation using Mathematica“. View thesis, 2009. http://handle.uws.edu.au:8081/1959.7/46572.
Der volle Inhalt der QuelleA thesis presented to the University of Western Sydney, College of Health and Science, School of Computing and Mathematics, in fulfilment of the requirements for the degree of Doctor of Philosophy (PhD). Includes bibliographies.
Guzainuer, Maimaitiyiming. „Boundary Summation Equation Preconditioning for Ordinary Differential Equations with Constant Coefficients on Locally Refined Meshes“. Thesis, Linköpings universitet, Matematiska institutionen, 2012. http://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-102573.
Der volle Inhalt der QuelleKok, Tayfun. „Stochastic evolution equations in Banach spaces and applications to the Heath-Jarrow-Morton-Musiela equation“. Thesis, University of York, 2017. http://etheses.whiterose.ac.uk/18070/.
Der volle Inhalt der QuelleZhou, Dong. „High-order numerical methods for pressure Poisson equation reformulations of the incompressible Navier-Stokes equations“. Diss., Temple University Libraries, 2014. http://cdm16002.contentdm.oclc.org/cdm/ref/collection/p245801coll10/id/295839.
Der volle Inhalt der QuellePh.D.
Projection methods for the incompressible Navier-Stokes equations (NSE) are efficient, but introduce numerical boundary layers and have limited temporal accuracy due to their fractional step nature. The Pressure Poisson Equation (PPE) reformulations represent a class of methods that replace the incompressibility constraint by a Poisson equation for the pressure, with a suitable choice of the boundary condition so that the incompressibility is maintained. PPE reformulations of the NSE have important advantages: the pressure is no longer implicitly coupled to the velocity, thus can be directly recovered by solving a Poisson equation, and no numerical boundary layers are generated; arbitrary order time-stepping schemes can be used to achieve high order accuracy in time. In this thesis, we focus on numerical approaches of the PPE reformulations, in particular, the Shirokoff-Rosales (SR) PPE reformulation. Interestingly, the electric boundary conditions, i.e., the tangential and divergence boundary conditions, provided for the velocity in the SR PPE reformulation render classical nodal finite elements non-convergent. We propose two alternative methodologies, mixed finite element methods and meshfree finite differences, and demonstrate that these approaches allow for arbitrary order of accuracy both in space and in time.
Temple University--Theses
Klepel, Konrad Verfasser], und Dirk [Akademischer Betreuer] [Blömker. „Amplitude equations for the generalised Swift-Hohenberg equation with noise / Konrad Klepel. Betreuer: Dirk Blömker“. Augsburg : Universität Augsburg, 2015. http://d-nb.info/107770562X/34.
Der volle Inhalt der QuelleUgail, Hassan. „3D facial data fitting using the biharmonic equation“. ACTA Press, 2006. http://hdl.handle.net/10454/2684.
Der volle Inhalt der QuelleNordli, Anders Samuelsen. „On the Hunter-Saxton equation“. Thesis, Norges teknisk-naturvitenskapelige universitet, Institutt for matematiske fag, 2012. http://urn.kb.se/resolve?urn=urn:nbn:no:ntnu:diva-19057.
Der volle Inhalt der QuelleKwek, Keng-Huat. „On Cahn-Hilliard type equation“. Diss., Georgia Institute of Technology, 1991. http://hdl.handle.net/1853/28819.
Der volle Inhalt der QuelleMugassabi, Souad. „Schrödinger equation with periodic potentials“. Thesis, University of Bradford, 2010. http://hdl.handle.net/10454/4895.
Der volle Inhalt der QuelleFedrizzi, Ennio. „Partial Differential Equation and Noise“. Phd thesis, Université Paris-Diderot - Paris VII, 2012. http://tel.archives-ouvertes.fr/tel-00759355.
Der volle Inhalt der QuelleMoussa, Ridha. „On the generalized Ince equation“. Thesis, The University of Wisconsin - Milwaukee, 2014. http://pqdtopen.proquest.com/#viewpdf?dispub=3636427.
Der volle Inhalt der QuelleWe investigate a Hill differential equation with trigonometric polynomial coefficients. we are interested in solutions which are even or odd and have period π or semi-period π. With one of the mentioned boundary conditions, our equation constitute a regular Sturm-Liouville eigenvalue problem. Using Fourier series representation each one of the four Sturm-Liouville operators is represented by an infinite banded matrix. In the particular cases of Ince and Lamé equations, the four infinite banded matrices become tridiagonal. We then investigate the problem of coexistence of periodic solutions and that of existence of polynomial solutions.
Gatti, Antonio. „A gauge invariant flow equation“. Thesis, University of Southampton, 2002. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.268629.
Der volle Inhalt der QuelleMelia, F. „The cosmic equation of state“. Springer Verlag, 2014. http://hdl.handle.net/10150/614766.
Der volle Inhalt der QuelleCorreia, Joaquim, Costa Fernando da, Sackmone Sirisack und Khankham Vongsavang. „Burgers' Equation and Some Applications“. Master's thesis, Edited by Thepsavanh Kitignavong, Faculty of Natural Sciences, National University of Laos, 2017. http://hdl.handle.net/10174/26615.
Der volle Inhalt der QuelleAl, Homsi Rania. „Equation Solving in Indian Mathematics“. Thesis, Uppsala universitet, Algebra och geometri, 2018. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-355870.
Der volle Inhalt der QuelleCarroll, Andrew. „The stochastic nonlinear heat equation“. Thesis, University of Hull, 1999. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.310216.
Der volle Inhalt der QuelleZhang, Henshui. „Local analysis of Loewner equation“. Thesis, Orléans, 2018. http://www.theses.fr/2018ORLE2064.
Der volle Inhalt der QuelleThis thesis studies the curve generation problem of the general Loewner equation. We use a local transformation in the chordal Loewner equation, and analyse the solution of the Loewner equation, obtain three results.At first, we analyse the Limit superior and limit inferior of the left 1/2 order of the driving function, then we prove a basic lemma about that the generation curves do not intersect with itself locally. By this lemma, we have three conclusion. Firstly, Lind proved that when 1/2-Hölder norm is less than 4, then the Loewner equation is generated by a simple curve. We discuss the case that the 1/2-Hölder norm is greater than 4, and give a sufficient condition of the generation curve is simple. Secondly, the limit inferior of the 1/2 order of the Brownian motion will tends to 0 locally, we give a estimation of the speed of it tends to 0. Thirdly, we proof that for the1/2 order Weierstrass function with coefficient less that a constant, the Loewner equation which is driven by it is generated by a simple curve.In the second part, we define the imaginary Loewner equation and its dual equation, and we do the local transformation for these two equation, after analyse their vanishing property, we build the connection between it with the curve generation problem. And then we give a sufficient condition on that the Loewner equation is generated by a curve locally.At last, we define and discuss the left self-similar driving function, and use the knowledge of complex dynamic to prove that if it is generated by a curve in the upper-half plane locally, then it is generated by a curve entirely
Daviau, Claude. „Equation de dirac non lineaire“. Nantes, 1993. http://www.theses.fr/1993NANT2006.
Der volle Inhalt der QuelleEti, Neslihan Pashaev Oktay. „Classical And Quantum Euler Equation/“. [s.l.]: [s.n.], 2007. http://library.iyte.edu.tr/tezler/master/matematik/T000610.pdf.
Der volle Inhalt der QuelleValenciano, Alejandro A. „Imaging by wave-equation inversion /“. May be available electronically:, 2008. http://proquest.umi.com/login?COPT=REJTPTU1MTUmSU5UPTAmVkVSPTI=&clientId=12498.
Der volle Inhalt der QuelleGuidi, Chiara. „The Complex Monge-Ampère Equation“. Master's thesis, Alma Mater Studiorum - Università di Bologna, 2015. http://amslaurea.unibo.it/9004/.
Der volle Inhalt der QuelleMurray, Patrick R. „The thermo-acoustic Fant equation“. Thesis, Keele University, 2012. http://eprints.keele.ac.uk/3836/.
Der volle Inhalt der Quelle