Inhaltsverzeichnis
Auswahl der wissenschaftlichen Literatur zum Thema „Equation de Langevin généralisé“
Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an
Machen Sie sich mit den Listen der aktuellen Artikel, Bücher, Dissertationen, Berichten und anderer wissenschaftlichen Quellen zum Thema "Equation de Langevin généralisé" bekannt.
Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.
Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.
Zeitschriftenartikel zum Thema "Equation de Langevin généralisé"
Ford, G. W., J. T. Lewis und R. F. O’Connell. „Quantum Langevin equation“. Physical Review A 37, Nr. 11 (01.06.1988): 4419–28. http://dx.doi.org/10.1103/physreva.37.4419.
Der volle Inhalt der Quellede Oliveira, Mário J. „Quantum Langevin equation“. Journal of Statistical Mechanics: Theory and Experiment 2020, Nr. 2 (21.02.2020): 023106. http://dx.doi.org/10.1088/1742-5468/ab6de2.
Der volle Inhalt der QuellePomeau, Yves, und Jarosław Piasecki. „The Langevin equation“. Comptes Rendus Physique 18, Nr. 9-10 (November 2017): 570–82. http://dx.doi.org/10.1016/j.crhy.2017.10.001.
Der volle Inhalt der QuelleWu, Xiongwu, Bernard R. Brooks und Eric Vanden-Eijnden. „Self-guided Langevin dynamics via generalized Langevin equation“. Journal of Computational Chemistry 37, Nr. 6 (16.07.2015): 595–601. http://dx.doi.org/10.1002/jcc.24015.
Der volle Inhalt der QuelleSekimoto, Ken. „Langevin Equation and Thermodynamics“. Progress of Theoretical Physics Supplement 130 (1998): 17–27. http://dx.doi.org/10.1143/ptps.130.17.
Der volle Inhalt der QuelleJaekel, M. T. „Stochastic quantum Langevin equation“. Journal of Physics A: Mathematical and General 22, Nr. 5 (07.03.1989): 537–57. http://dx.doi.org/10.1088/0305-4470/22/5/017.
Der volle Inhalt der QuelleGillespie, Daniel T. „The chemical Langevin equation“. Journal of Chemical Physics 113, Nr. 1 (Juli 2000): 297–306. http://dx.doi.org/10.1063/1.481811.
Der volle Inhalt der QuelleSavović, Svetislav, Linqing Li, Isidora Savović, Alexandar Djordjevich und Rui Min. „Treatment of Mode Coupling in Step-Index Multimode Microstructured Polymer Optical Fibers by the Langevin Equation“. Polymers 14, Nr. 6 (19.03.2022): 1243. http://dx.doi.org/10.3390/polym14061243.
Der volle Inhalt der QuelleAhmad, Bashir, und Juan J. Nieto. „Solvability of Nonlinear Langevin Equation Involving Two Fractional Orders with Dirichlet Boundary Conditions“. International Journal of Differential Equations 2010 (2010): 1–10. http://dx.doi.org/10.1155/2010/649486.
Der volle Inhalt der QuelleKhalili Golmankhaneh, Alireza. „On the Fractal Langevin Equation“. Fractal and Fractional 3, Nr. 1 (13.03.2019): 11. http://dx.doi.org/10.3390/fractalfract3010011.
Der volle Inhalt der QuelleDissertationen zum Thema "Equation de Langevin généralisé"
Malhado, Joaô Pedro Bettencourt Cepêda. „Etudes théoriques de la dynamique impliquant des intersections coniques“. Paris 6, 2009. http://www.theses.fr/2009PA066352.
Der volle Inhalt der QuelleBorgman, Jacob. „Fluctuations of the expansion : the Langevin-Raychaudhuri equation /“. Thesis, Connect to Dissertations & Theses @ Tufts University, 2004.
Den vollen Inhalt der Quelle findenAdviser: Larry H. Ford. Submitted to the Dept. of Physics. Includes bibliographical references (leaves 117-120). Access restricted to members of the Tufts University community. Also available via the World Wide Web;
Sachs, Matthias Ernst. „The Generalised Langevin Equation : asymptotic properties and numerical analysis“. Thesis, University of Edinburgh, 2018. http://hdl.handle.net/1842/29566.
Der volle Inhalt der QuelleBirrell, Jeremiah, Scott Hottovy, Giovanni Volpe und Jan Wehr. „Small Mass Limit of a Langevin Equation on a Manifold“. SPRINGER BASEL AG, 2016. http://hdl.handle.net/10150/622782.
Der volle Inhalt der QuelleWe study damped geodesic motion of a particle of mass m on a Riemannian manifold, in the presence of an external force and noise. Lifting the resulting stochastic differential equation to the orthogonal frame bundle, we prove that, as , its solutions converge to solutions of a limiting equation which includes a noise-induced drift term. A very special case of the main result presents Brownian motion on the manifold as a limit of inertial systems.
Schaudinnus, Norbert [Verfasser], und Gerhard [Akademischer Betreuer] Stock. „Stochastic modeling of biomolecular systems using the data-driven Langevin equation“. Freiburg : Universität, 2015. http://d-nb.info/1122646887/34.
Der volle Inhalt der QuelleSiegle, Peter [Verfasser]. „Markovian Embedding of Superdiffusion within a Generalized Langevin Equation Approach / Peter Siegle“. München : Verlag Dr. Hut, 2011. http://d-nb.info/1011441683/34.
Der volle Inhalt der QuelleCaballero-Manrique, Esther. „Langevin Equation approach to bridge different timescales of relaxion in protein dynamics /“. view abstract or download file of text, 2006. http://proquest.umi.com/pqdweb?did=1276397961&sid=3&Fmt=2&clientId=11238&RQT=309&VName=PQD.
Der volle Inhalt der QuelleTypescript. Includes vita and abstract. Includes bibliographical references (leaves 90-99). Also available for download via the World Wide Web; free to University of Oregon users.
Song, XiaoGeng Ph D. Massachusetts Institute of Technology. „Nonadiabatic electron transfer in the condensed phase, via semiclassical and Langevin equation approach“. Thesis, Massachusetts Institute of Technology, 2009. http://hdl.handle.net/1721.1/49751.
Der volle Inhalt der QuelleIncludes bibliographical references (leaves 127-137).
In this dissertation, we discuss two methods developed during my PhD study to simulate electron transfer systems. The first method, the semi-classical approximation, is derived from the stationary phase approximation to the path integral in the spin-coherent representation. The resulting equation of motion is a classical-like ordinary differential equation subject to a two-ended boundary condition. The boundary value problem is solved using the "near real trajectory" algorithm. This method is applied to three scattering problems to compute the transmission and reflection probabilities. The strength and weakness of this approach is investigated in details. The second approach is based on the generalized Langevin equation, in which the quantum transitions of electronic states are condensed into a linear regression equation. The memory kernel in the regression equation is computed using a second perturbation expansion. The perturbation is optimized to achieve the best convergence of the second order expansion. This procedure results in a tow-hop Langevin equation, the THLE. Results from a spin-boson system validate the THLE in a wide range of parameter regimes. Lastly, we tested the feasibility of using Monte Carlo sampling to compute the memory kernel from the spin-boson system and proposed a smoothing technique to reduce the number of sampling points.
by XiaoGeng Song.
Ph.D.
Pedchenko, B. O., A. S. Yermolenko, Stanislav Ivanovych Denisov, Станіслав Іванович Денисов und Станислав Иванович Денисов. „Langevin equations for suspended magnetic particles drifting under the Magnus force“. Thesis, Sumy State University, 2017. http://essuir.sumdu.edu.ua/handle/123456789/63757.
Der volle Inhalt der QuelleAttanasio, Felipe [UNESP]. „Numerical study of the Ginzburg-Landau-Langevin equation: coherent structures and noise perturbation theory“. Universidade Estadual Paulista (UNESP), 2013. http://hdl.handle.net/11449/92029.
Der volle Inhalt der QuelleNesta Dissertação apresentamos um estudo numéerico em uma dimensão espacial da equação de Ginzburg-Landau-Langevin (GLL), com ênfase na aplicabilidade de um método de perturbação estocástico e na mecânica estatística de defeitos topológicos em modelos de campos escalares reais. Revisamos brevemente conceitos de mecânica estatística de sistemas em equilíbrio e próximos a ele e apresentamos como a equação de GLL pode ser usada em sistemas que exibem transições de fase, na quantização estocástica e no estudo da interação de estruturas coerentes com fônons de origem térmica. Também apresentamos um método perturbativo, denominado teoria de perturbação no ruído (TPR), adequado para situações onde a intensidade do ruído estocástico é fraca. Através de simulações numéricas, investigamos a restauração de uma simetria 'Z IND. 2' quebrada, a aplicabilidade da TPR em uma dimensão e efeitos de temperatura finita numa solução topológica do tipo kink - onde apresentamos novos resultados sobre defeitos de dois kinks
In this Dissertation we present a numerical study of the GinzburgLandau-Langevin (GLL) equation in one spatial dimension, with emphasis on the applicability of a stochastic perturbative method and the statistical mechanics of topological defect structures in field-theoretic models of real scalar fields. We briefly review concepts of equilibrium and near-equilibrium statistical mechanics and present how the GLL equation can be used in systems that exhibit phase transitions, in stochastic quantization and in the study of the interaction of coherent structures with thermal phonons. We also present a perturbative method, named noise perturbation theory (NPT), suitable for situations where the stochastic noise intensity is weak. Through numerical simulations we investigate the restoration of a broken 'Z IND. 2' symmetry, the applicability of the NPT in one dimension and finite temperature effects on a topological kink solution - where we present new results on two-kink defects
Bücher zum Thema "Equation de Langevin généralisé"
P, Kalmykov Yu, und Waldron J. T, Hrsg. The Langevin equation: With applications in physics, chemistry, and electrical engineering. Singapore: World Scientific, 1996.
Den vollen Inhalt der Quelle findenP, Kalmykov Yu, und Waldron J. T, Hrsg. The Langevin equation: With applications to stochastic problems in physics, chemistry, and electrical engineering. 2. Aufl. Singapore: World Scientific, 2004.
Den vollen Inhalt der Quelle findenLee, James Anders Sean. The complex Langevin equation. 1994.
Den vollen Inhalt der Quelle findenThe Langevin Equation With Applications To Stochastic Problems In Physics Chemistry And Electrical Engineering. World Scientific Publishing Company, 2012.
Den vollen Inhalt der Quelle findenCoffey, William T. Langevin Equation: With Applications to Stochastic Problems in Physics, Chemistry and Electrical Engineering. World Scientific Publishing Co Pte Ltd, 2017.
Den vollen Inhalt der Quelle findenCoffey, William T., Yu P. Kalmykov und J. T. Waldron. The Langevin Equation: With Applications to Stochastic Problems in Physics, Chemistry and Electrical Engineering (World Scientific Series in Contemporary Chemical Physics Vol. 14) - Second Edition. 2. Aufl. World Scientific Publishing Company, 2004.
Den vollen Inhalt der Quelle findenFurst, Eric M., und Todd M. Squires. Passive microrheology. Oxford University Press, 2018. http://dx.doi.org/10.1093/oso/9780199655205.003.0003.
Der volle Inhalt der QuelleSucci, Sauro. Stochastic Particle Dynamics. Oxford University Press, 2018. http://dx.doi.org/10.1093/oso/9780199592357.003.0009.
Der volle Inhalt der QuelleMilonni, Peter W. An Introduction to Quantum Optics and Quantum Fluctuations. Oxford University Press, 2019. http://dx.doi.org/10.1093/oso/9780199215614.001.0001.
Der volle Inhalt der QuelleEriksson, Olle, Anders Bergman, Lars Bergqvist und Johan Hellsvik. Atomistic Spin Dynamics. Oxford University Press, 2017. http://dx.doi.org/10.1093/oso/9780198788669.001.0001.
Der volle Inhalt der QuelleBuchteile zum Thema "Equation de Langevin généralisé"
Mauri, Roberto. „Langevin Equation“. In Non-Equilibrium Thermodynamics in Multiphase Flows, 25–33. Dordrecht: Springer Netherlands, 2013. http://dx.doi.org/10.1007/978-94-007-5461-4_3.
Der volle Inhalt der QuelleTomé, Tânia, und Mário J. de Oliveira. „Langevin Equation“. In Graduate Texts in Physics, 43–71. Cham: Springer International Publishing, 2014. http://dx.doi.org/10.1007/978-3-319-11770-6_3.
Der volle Inhalt der QuelleWang, Ruiqi. „Langevin Equation“. In Encyclopedia of Systems Biology, 1092. New York, NY: Springer New York, 2013. http://dx.doi.org/10.1007/978-1-4419-9863-7_361.
Der volle Inhalt der QuelleRisken, Hannes. „Langevin Equations“. In The Fokker-Planck Equation, 32–62. Berlin, Heidelberg: Springer Berlin Heidelberg, 1996. http://dx.doi.org/10.1007/978-3-642-61544-3_3.
Der volle Inhalt der QuelleGliklikh, Yuri. „The Langevin Equation“. In Applied Mathematical Sciences, 87–94. New York, NY: Springer New York, 1997. http://dx.doi.org/10.1007/978-1-4612-1866-1_5.
Der volle Inhalt der QuelleSandev, Trifce, und Živorad Tomovski. „Generalized Langevin Equation“. In Fractional Equations and Models, 247–300. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-29614-8_6.
Der volle Inhalt der QuellePavliotis, Grigorios A. „The Langevin Equation“. In Texts in Applied Mathematics, 181–233. New York, NY: Springer New York, 2014. http://dx.doi.org/10.1007/978-1-4939-1323-7_6.
Der volle Inhalt der QuelleBalakrishnan, V. „The Langevin Equation“. In Elements of Nonequilibrium Statistical Mechanics, 10–23. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-62233-6_2.
Der volle Inhalt der QuelleLoos, Sarah A. M. „The Langevin Equation“. In Stochastic Systems with Time Delay, 21–75. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-80771-9_2.
Der volle Inhalt der QuellePhillies, George D. J. „The Langevin Equation“. In Elementary Lectures in Statistical Mechanics, 328–38. New York, NY: Springer New York, 2000. http://dx.doi.org/10.1007/978-1-4612-1264-5_30.
Der volle Inhalt der QuelleKonferenzberichte zum Thema "Equation de Langevin généralisé"
Gidas, Basilis. „Global optimization via the Langevin equation“. In 1985 24th IEEE Conference on Decision and Control. IEEE, 1985. http://dx.doi.org/10.1109/cdc.1985.268602.
Der volle Inhalt der QuelleAsano, T., T. Wada, M. Ohta und N. Takigawa. „Langevin equation as a stochastic differential equation in nuclear physics“. In TOURS SYMPOSIUM ON NUCLEAR PHYSICS VI. AIP, 2007. http://dx.doi.org/10.1063/1.2713551.
Der volle Inhalt der QuelleMetzler, Ralf. „From the Langevin equation to the fractional Fokker–Planck equation“. In Stochastic and chaotic dynamics in the lakes. AIP, 2000. http://dx.doi.org/10.1063/1.1302409.
Der volle Inhalt der QuelleFord, George W. „Radiation Reaction and the quantum Langevin equation“. In Frontiers in Optics. Washington, D.C.: OSA, 2014. http://dx.doi.org/10.1364/fio.2014.fth3f.4.
Der volle Inhalt der QuelleXiaobo Tan. „Self-organization of autonomous swarms via Langevin equation“. In 2007 46th IEEE Conference on Decision and Control. IEEE, 2007. http://dx.doi.org/10.1109/cdc.2007.4434329.
Der volle Inhalt der QuelleAltinkaya, Mustafa A., und Ercan E. Kuruoglu. „Modeling enzymatic reactions via chemical Langevin-Levy equation“. In 2012 20th Signal Processing and Communications Applications Conference (SIU). IEEE, 2012. http://dx.doi.org/10.1109/siu.2012.6204746.
Der volle Inhalt der QuelleICHIKAWA, T., T. ASANO, T. WADA, M. OHTA, S. YAMAJI und H. NAKAHARA. „FISSION MODES STUDIED WITH MULTI-DIMENSIONAL LANGEVIN EQUATION“. In Proceedings of the Third International Conference. WORLD SCIENTIFIC, 2003. http://dx.doi.org/10.1142/9789812705211_0071.
Der volle Inhalt der QuellePrice, D. A., L. R. Croft, E. U. Saritas, P. W. Goodwill und S. M. Conolly. „Large tip solution to dynamic Langevin equation for MPI“. In 2013 International Workshop on Magnetic Particle Imaging (IWMPI). IEEE, 2013. http://dx.doi.org/10.1109/iwmpi.2013.6528385.
Der volle Inhalt der QuelleJungemann und Meinerzhagen. „A Legendre polynomial solver for the Langevin Boltzmann equation“. In Electrical Performance of Electronic Packaging. IEEE, 2004. http://dx.doi.org/10.1109/iwce.2004.1407299.
Der volle Inhalt der QuelleYaghi, Shouhei. „Relation between Langevin type equation driven by the chaotic force and stochastic differential equation“. In Third tohwa university international conference on statistical physics. AIP, 2000. http://dx.doi.org/10.1063/1.1291585.
Der volle Inhalt der QuelleBerichte der Organisationen zum Thema "Equation de Langevin généralisé"
Nasstrom, J. Langevin equation model of dispersion in the convective boundary layer. Office of Scientific and Technical Information (OSTI), August 1998. http://dx.doi.org/10.2172/2392.
Der volle Inhalt der QuelleMitoma, Itaru. Weak Solution of the Langevin Equation on a Generalized Functional Space,. Fort Belvoir, VA: Defense Technical Information Center, Februar 1988. http://dx.doi.org/10.21236/ada194290.
Der volle Inhalt der QuelleKallianpur, G., und I. Mitoma. A Langevin-Type Stochastic Differential Equation on a Space of Generalized Functionals. Fort Belvoir, VA: Defense Technical Information Center, August 1988. http://dx.doi.org/10.21236/ada199809.
Der volle Inhalt der Quelle