Auswahl der wissenschaftlichen Literatur zum Thema „Equation de Langevin généralisé“

Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an

Wählen Sie eine Art der Quelle aus:

Machen Sie sich mit den Listen der aktuellen Artikel, Bücher, Dissertationen, Berichten und anderer wissenschaftlichen Quellen zum Thema "Equation de Langevin généralisé" bekannt.

Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.

Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.

Zeitschriftenartikel zum Thema "Equation de Langevin généralisé"

1

Ford, G. W., J. T. Lewis und R. F. O’Connell. „Quantum Langevin equation“. Physical Review A 37, Nr. 11 (01.06.1988): 4419–28. http://dx.doi.org/10.1103/physreva.37.4419.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
2

de Oliveira, Mário J. „Quantum Langevin equation“. Journal of Statistical Mechanics: Theory and Experiment 2020, Nr. 2 (21.02.2020): 023106. http://dx.doi.org/10.1088/1742-5468/ab6de2.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
3

Pomeau, Yves, und Jarosław Piasecki. „The Langevin equation“. Comptes Rendus Physique 18, Nr. 9-10 (November 2017): 570–82. http://dx.doi.org/10.1016/j.crhy.2017.10.001.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
4

Wu, Xiongwu, Bernard R. Brooks und Eric Vanden-Eijnden. „Self-guided Langevin dynamics via generalized Langevin equation“. Journal of Computational Chemistry 37, Nr. 6 (16.07.2015): 595–601. http://dx.doi.org/10.1002/jcc.24015.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
5

Sekimoto, Ken. „Langevin Equation and Thermodynamics“. Progress of Theoretical Physics Supplement 130 (1998): 17–27. http://dx.doi.org/10.1143/ptps.130.17.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
6

Jaekel, M. T. „Stochastic quantum Langevin equation“. Journal of Physics A: Mathematical and General 22, Nr. 5 (07.03.1989): 537–57. http://dx.doi.org/10.1088/0305-4470/22/5/017.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
7

Gillespie, Daniel T. „The chemical Langevin equation“. Journal of Chemical Physics 113, Nr. 1 (Juli 2000): 297–306. http://dx.doi.org/10.1063/1.481811.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
8

Savović, Svetislav, Linqing Li, Isidora Savović, Alexandar Djordjevich und Rui Min. „Treatment of Mode Coupling in Step-Index Multimode Microstructured Polymer Optical Fibers by the Langevin Equation“. Polymers 14, Nr. 6 (19.03.2022): 1243. http://dx.doi.org/10.3390/polym14061243.

Der volle Inhalt der Quelle
Annotation:
By solving the Langevin equation, mode coupling in a multimode step-index microstructured polymer optical fibers (SI mPOF) with a solid core was investigated. The numerical integration of the Langevin equation was based on the computer-simulated Langevin force. The numerical solution of the Langevin equation corresponded to the previously reported theoretical data. We demonstrated that by solving the Langevin equation (stochastic differential equation), one can successfully treat a mode coupling in multimode SI mPOF as a stochastic process, since it is caused by its intrinsic random perturbations. Thus, the Langevin equation allowed for a stochastic mathematical description of mode coupling in SI mPOF. Regarding the efficiency and execution speed, the Langevin equation was more favorable than the power flow equation. Such knowledge is useful for the use of multimode SI mPOFs for potential sensing and communication applications.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
9

Ahmad, Bashir, und Juan J. Nieto. „Solvability of Nonlinear Langevin Equation Involving Two Fractional Orders with Dirichlet Boundary Conditions“. International Journal of Differential Equations 2010 (2010): 1–10. http://dx.doi.org/10.1155/2010/649486.

Der volle Inhalt der Quelle
Annotation:
We study a Dirichlet boundary value problem for Langevin equation involving two fractional orders. Langevin equation has been widely used to describe the evolution of physical phenomena in fluctuating environments. However, ordinary Langevin equation does not provide the correct description of the dynamics for systems in complex media. In order to overcome this problem and describe dynamical processes in a fractal medium, numerous generalizations of Langevin equation have been proposed. One such generalization replaces the ordinary derivative by a fractional derivative in the Langevin equation. This gives rise to the fractional Langevin equation with a single index. Recently, a new type of Langevin equation with two different fractional orders has been introduced which provides a more flexible model for fractal processes as compared with the usual one characterized by a single index. The contraction mapping principle and Krasnoselskii's fixed point theorem are applied to prove the existence of solutions of the problem in a Banach space.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
10

Khalili Golmankhaneh, Alireza. „On the Fractal Langevin Equation“. Fractal and Fractional 3, Nr. 1 (13.03.2019): 11. http://dx.doi.org/10.3390/fractalfract3010011.

Der volle Inhalt der Quelle
Annotation:
In this paper, fractal stochastic Langevin equations are suggested, providing a mathematical model for random walks on the middle- τ Cantor set. The fractal mean square displacement of different random walks on the middle- τ Cantor set are presented. Fractal under-damped and over-damped Langevin equations, fractal scaled Brownian motion, and ultra-slow fractal scaled Brownian motion are suggested and the corresponding fractal mean square displacements are obtained. The results are plotted to show the details.
APA, Harvard, Vancouver, ISO und andere Zitierweisen

Dissertationen zum Thema "Equation de Langevin généralisé"

1

Malhado, Joaô Pedro Bettencourt Cepêda. „Etudes théoriques de la dynamique impliquant des intersections coniques“. Paris 6, 2009. http://www.theses.fr/2009PA066352.

Der volle Inhalt der Quelle
Annotation:
En chimie moléculaire, l'approximation de Born-Oppenheimer permet d'utiliser le concept de surface d'énergie potentielle à l'échelle atomique. Les intersections coniques (ICs) correspondent aux points où ces surfaces sont dégénérées, et où cette approximation n'est plus valable; les concepts de la dynamique classique y voient leur application réduite et les transitions non-adiabatiques entre ces surfaces deviennent importantes. Les ICs sont particulièrement d'intérêt en photochimie, puisque elles sont responsables de la relaxation électronique non-radiative du premier état excité vers l'état fondamental. Cette thèse étudie deux aspects théoriques différents de la dynamique associée aux ICs. Dans un premier temps, l'effet de la dynamique du solvant sur la dynamique autour des ICs est abordé. En particulier, nous présentons l'influence d'un solvant polaire sur la réaction photo-isomérisationd'un modèle d'une base de Schiff protonée. L'attention est centrée sur l'introduction d'un terme de friction dépendante du temps dans la description dynamique des coordonnées internes de la molécule et celle du solvant. Nous démontrons que la prise en compte des dissipations est nécessaire à une description correcte de la dynamique du modèle, et que l'échelle de temps du mouvement du solvant détermine la vitesse de relaxation de l'état excité ainsi que le rapport isomérique des produits. Dans une seconde partie, nous nous focalisons sur la formulation d'une description simple, et utilisable dans les applications, pour la dynamique autour des ICs et plus particulièrement, pour décrire la vitesse de relaxation non-adiabatique au voisinage de l'une IC. Un modèle pour le mécanisme de cette relaxation est introduit, en utilisant une description de l'IC comme un double cône, des trajectoires classiques et l'expression de Landau-Zener pour la probabilité de transition non-adiabatique. Deux géométries différentes pour le cône sont considérées. Le cas le plus simple est le double cône vertical circulaire puisqu'une formulation analytique de la constante de vitesse est rendue possible par des propriétés des trajectoires dues à la symétrie du problème. Nous présentons dans un second temps le cas d'un double cône asymétrique penché, pour lequel une constante de vitesse analytique n'a pas été obtenue, mais où les concepts précédemment introduits dans le modèle sont utilisés pour étudier la variation de la vitesse de relaxation en fonction des conditions initiales et de la géométrie de l'IC. Les résultats du modèle sont comparés avec des simulations utilisant la méthode de surface hopping, avec laquelle le modèle partage un certain nombre de points communs.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
2

Borgman, Jacob. „Fluctuations of the expansion : the Langevin-Raychaudhuri equation /“. Thesis, Connect to Dissertations & Theses @ Tufts University, 2004.

Den vollen Inhalt der Quelle finden
Annotation:
Thesis (Ph.D.)--Tufts University, 2004.
Adviser: Larry H. Ford. Submitted to the Dept. of Physics. Includes bibliographical references (leaves 117-120). Access restricted to members of the Tufts University community. Also available via the World Wide Web;
APA, Harvard, Vancouver, ISO und andere Zitierweisen
3

Sachs, Matthias Ernst. „The Generalised Langevin Equation : asymptotic properties and numerical analysis“. Thesis, University of Edinburgh, 2018. http://hdl.handle.net/1842/29566.

Der volle Inhalt der Quelle
Annotation:
In this thesis we concentrate on instances of the GLE which can be represented in a Markovian form in an extended phase space. We extend previous results on the geometric ergodicity of this class of GLEs using Lyapunov techniques, which allows us to conclude ergodicity for a large class of GLEs relevant to molecular dynamics applications. The main body of this thesis concerns the numerical discretisation of the GLE in the extended phase space representation. We generalise numerical discretisation schemes which have been previously proposed for the underdamped Langevin equation and which are based on a decomposition of the vector field into a Hamiltonian part and a linear SDE. Certain desirable properties regarding the accuracy of configurational averages of these schemes are inherited in the GLE context. We also rigorously prove geometric ergodicity on bounded domains by showing that a uniform minorisation condition and a uniform Lyapunov condition are satisfied for sufficiently small timestep size. We show that the discretisation schemes which we propose behave consistently in the white noise and overdamped limits, hence we provide a family of universal integrators for Langevin dynamics. Finally, we consider multiple-time stepping schemes making use of a decomposition of the fluctuation-dissipation term into a reversible and non-reversible part. These schemes are designed to efficiently integrate instances of the GLE whose Markovian representation involves a high number of auxiliary variables or a configuration dependent fluctuation-dissipation term. We also consider an application of dynamics based on the GLE in the context of large scale Bayesian inference as an extension of previously proposed adaptive thermostat methods. In these methods the gradient of the log posterior density is only evaluated on a subset (minibatch) of the whole dataset, which is randomly selected at each timestep. Incorporating a memory kernel in the adaptive thermostat formulation ensures that time-correlated gradient noise is dissipated in accordance with the fluctuation-dissipation theorem. This allows us to relax the requirement of using i.i.d. minibatches, and explore a variety of minibatch sampling approaches.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
4

Birrell, Jeremiah, Scott Hottovy, Giovanni Volpe und Jan Wehr. „Small Mass Limit of a Langevin Equation on a Manifold“. SPRINGER BASEL AG, 2016. http://hdl.handle.net/10150/622782.

Der volle Inhalt der Quelle
Annotation:
12 month embargo; First Online: 11 July 2016
We study damped geodesic motion of a particle of mass m on a Riemannian manifold, in the presence of an external force and noise. Lifting the resulting stochastic differential equation to the orthogonal frame bundle, we prove that, as , its solutions converge to solutions of a limiting equation which includes a noise-induced drift term. A very special case of the main result presents Brownian motion on the manifold as a limit of inertial systems.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
5

Schaudinnus, Norbert [Verfasser], und Gerhard [Akademischer Betreuer] Stock. „Stochastic modeling of biomolecular systems using the data-driven Langevin equation“. Freiburg : Universität, 2015. http://d-nb.info/1122646887/34.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
6

Siegle, Peter [Verfasser]. „Markovian Embedding of Superdiffusion within a Generalized Langevin Equation Approach / Peter Siegle“. München : Verlag Dr. Hut, 2011. http://d-nb.info/1011441683/34.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
7

Caballero-Manrique, Esther. „Langevin Equation approach to bridge different timescales of relaxion in protein dynamics /“. view abstract or download file of text, 2006. http://proquest.umi.com/pqdweb?did=1276397961&sid=3&Fmt=2&clientId=11238&RQT=309&VName=PQD.

Der volle Inhalt der Quelle
Annotation:
Thesis (Ph. D.)--University of Oregon, 2006.
Typescript. Includes vita and abstract. Includes bibliographical references (leaves 90-99). Also available for download via the World Wide Web; free to University of Oregon users.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
8

Song, XiaoGeng Ph D. Massachusetts Institute of Technology. „Nonadiabatic electron transfer in the condensed phase, via semiclassical and Langevin equation approach“. Thesis, Massachusetts Institute of Technology, 2009. http://hdl.handle.net/1721.1/49751.

Der volle Inhalt der Quelle
Annotation:
Thesis (Ph. D.)--Massachusetts Institute of Technology, Dept. of Chemistry, 2009.
Includes bibliographical references (leaves 127-137).
In this dissertation, we discuss two methods developed during my PhD study to simulate electron transfer systems. The first method, the semi-classical approximation, is derived from the stationary phase approximation to the path integral in the spin-coherent representation. The resulting equation of motion is a classical-like ordinary differential equation subject to a two-ended boundary condition. The boundary value problem is solved using the "near real trajectory" algorithm. This method is applied to three scattering problems to compute the transmission and reflection probabilities. The strength and weakness of this approach is investigated in details. The second approach is based on the generalized Langevin equation, in which the quantum transitions of electronic states are condensed into a linear regression equation. The memory kernel in the regression equation is computed using a second perturbation expansion. The perturbation is optimized to achieve the best convergence of the second order expansion. This procedure results in a tow-hop Langevin equation, the THLE. Results from a spin-boson system validate the THLE in a wide range of parameter regimes. Lastly, we tested the feasibility of using Monte Carlo sampling to compute the memory kernel from the spin-boson system and proposed a smoothing technique to reduce the number of sampling points.
by XiaoGeng Song.
Ph.D.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
9

Pedchenko, B. O., A. S. Yermolenko, Stanislav Ivanovych Denisov, Станіслав Іванович Денисов und Станислав Иванович Денисов. „Langevin equations for suspended magnetic particles drifting under the Magnus force“. Thesis, Sumy State University, 2017. http://essuir.sumdu.edu.ua/handle/123456789/63757.

Der volle Inhalt der Quelle
Annotation:
The Magnus effect, i.e., dependence of the trajectory of a body on its rotation, is widely used in sport, science and technical applications. Recently we have shown [1, 2] that due to the Magnus force the single-domain ferromagnetic particles, which are suspended in a viscous fluid and subjected to a harmonic driving force and a non-uniformly rotating magnetic field, can perform drift in a preferred direction. This result has been obtained within the deterministic approach when thermal fluctuations, leading to translational and rotational Brownian motion of particles, are ignored. Our estimations show [2] that it is possible for relatively large particles (> 102 nm). Therefore, to study the drift phenomenon for smaller particles, it is necessary to account for these fluctuations in basic equations.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
10

Attanasio, Felipe [UNESP]. „Numerical study of the Ginzburg-Landau-Langevin equation: coherent structures and noise perturbation theory“. Universidade Estadual Paulista (UNESP), 2013. http://hdl.handle.net/11449/92029.

Der volle Inhalt der Quelle
Annotation:
Made available in DSpace on 2014-06-11T19:25:34Z (GMT). No. of bitstreams: 0 Previous issue date: 2013-02-21Bitstream added on 2014-06-13T19:12:26Z : No. of bitstreams: 1 attanasio_f_me_ift.pdf: 793752 bytes, checksum: 490b63eed4bdd7ec83984c78ac824d6d (MD5)
Nesta Dissertação apresentamos um estudo numéerico em uma dimensão espacial da equação de Ginzburg-Landau-Langevin (GLL), com ênfase na aplicabilidade de um método de perturbação estocástico e na mecânica estatística de defeitos topológicos em modelos de campos escalares reais. Revisamos brevemente conceitos de mecânica estatística de sistemas em equilíbrio e próximos a ele e apresentamos como a equação de GLL pode ser usada em sistemas que exibem transições de fase, na quantização estocástica e no estudo da interação de estruturas coerentes com fônons de origem térmica. Também apresentamos um método perturbativo, denominado teoria de perturbação no ruído (TPR), adequado para situações onde a intensidade do ruído estocástico é fraca. Através de simulações numéricas, investigamos a restauração de uma simetria 'Z IND. 2' quebrada, a aplicabilidade da TPR em uma dimensão e efeitos de temperatura finita numa solução topológica do tipo kink - onde apresentamos novos resultados sobre defeitos de dois kinks
In this Dissertation we present a numerical study of the GinzburgLandau-Langevin (GLL) equation in one spatial dimension, with emphasis on the applicability of a stochastic perturbative method and the statistical mechanics of topological defect structures in field-theoretic models of real scalar fields. We briefly review concepts of equilibrium and near-equilibrium statistical mechanics and present how the GLL equation can be used in systems that exhibit phase transitions, in stochastic quantization and in the study of the interaction of coherent structures with thermal phonons. We also present a perturbative method, named noise perturbation theory (NPT), suitable for situations where the stochastic noise intensity is weak. Through numerical simulations we investigate the restoration of a broken 'Z IND. 2' symmetry, the applicability of the NPT in one dimension and finite temperature effects on a topological kink solution - where we present new results on two-kink defects
APA, Harvard, Vancouver, ISO und andere Zitierweisen

Bücher zum Thema "Equation de Langevin généralisé"

1

P, Kalmykov Yu, und Waldron J. T, Hrsg. The Langevin equation: With applications in physics, chemistry, and electrical engineering. Singapore: World Scientific, 1996.

Den vollen Inhalt der Quelle finden
APA, Harvard, Vancouver, ISO und andere Zitierweisen
2

P, Kalmykov Yu, und Waldron J. T, Hrsg. The Langevin equation: With applications to stochastic problems in physics, chemistry, and electrical engineering. 2. Aufl. Singapore: World Scientific, 2004.

Den vollen Inhalt der Quelle finden
APA, Harvard, Vancouver, ISO und andere Zitierweisen
3

Lee, James Anders Sean. The complex Langevin equation. 1994.

Den vollen Inhalt der Quelle finden
APA, Harvard, Vancouver, ISO und andere Zitierweisen
4

The Langevin Equation With Applications To Stochastic Problems In Physics Chemistry And Electrical Engineering. World Scientific Publishing Company, 2012.

Den vollen Inhalt der Quelle finden
APA, Harvard, Vancouver, ISO und andere Zitierweisen
5

Coffey, William T. Langevin Equation: With Applications to Stochastic Problems in Physics, Chemistry and Electrical Engineering. World Scientific Publishing Co Pte Ltd, 2017.

Den vollen Inhalt der Quelle finden
APA, Harvard, Vancouver, ISO und andere Zitierweisen
6

Coffey, William T., Yu P. Kalmykov und J. T. Waldron. The Langevin Equation: With Applications to Stochastic Problems in Physics, Chemistry and Electrical Engineering (World Scientific Series in Contemporary Chemical Physics Vol. 14) - Second Edition. 2. Aufl. World Scientific Publishing Company, 2004.

Den vollen Inhalt der Quelle finden
APA, Harvard, Vancouver, ISO und andere Zitierweisen
7

Furst, Eric M., und Todd M. Squires. Passive microrheology. Oxford University Press, 2018. http://dx.doi.org/10.1093/oso/9780199655205.003.0003.

Der volle Inhalt der Quelle
Annotation:
The underlying theory of passive microrheology is introduced as an in-depth examination of the Generalized Stokes-Einstein Relation (GSER) from the starting point of the Langevin equation. The chapter includes a careful treatment of the assumptions that must be made for the technique to work, and what happens when these assumptions are violated. Methods of interpreting passive microrheology experiments and the general limits of operation are highlighted. The Generalized Stokes-Einstein Relation (GSER) is the principal defining equation of passive microrheology. It is a physical relation between the thermal motion of probe particles and the material rheology. Specifically, it relates the observable displacement of the probe particles to the surrounding material’s rheological response.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
8

Succi, Sauro. Stochastic Particle Dynamics. Oxford University Press, 2018. http://dx.doi.org/10.1093/oso/9780199592357.003.0009.

Der volle Inhalt der Quelle
Annotation:
Dense fluids and liquids molecules are in constant interaction; hence, they do not fit into the Boltzmann’s picture of a clearcut separation between free-streaming and collisional interactions. Since the interactions are soft and do not involve large scattering angles, an effective way of describing dense fluids is to formulate stochastic models of particle motion, as pioneered by Einstein’s theory of Brownian motion and later extended by Paul Langevin. Besides its practical value for the study of the kinetic theory of dense fluids, Brownian motion bears a central place in the historical development of kinetic theory. Among others, it provided conclusive evidence in favor of the atomistic theory of matter. This chapter introduces the basic notions of stochastic dynamics and its connection with other important kinetic equations, primarily the Fokker–Planck equation, which bear a complementary role to the Boltzmann equation in the kinetic theory of dense fluids.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
9

Milonni, Peter W. An Introduction to Quantum Optics and Quantum Fluctuations. Oxford University Press, 2019. http://dx.doi.org/10.1093/oso/9780199215614.001.0001.

Der volle Inhalt der Quelle
Annotation:
This book is an introduction to quantum optics for students who have studied electromagnetism and quantum mechanics at an advanced undergraduate or graduate level. It provides detailed expositions of theory with emphasis on general physical principles. Foundational topics in classical and quantum electrodynamics, including the semiclassical theory of atom-field interactions, the quantization of the electromagnetic field in dispersive and dissipative media, uncertainty relations, and spontaneous emission, are addressed in the first half of the book. The second half begins with a chapter on the Jaynes-Cummings model, dressed states, and some distinctly quantum-mechanical features of atom-field interactions, and includes discussion of entanglement, the no-cloning theorem, von Neumann’s proof concerning hidden variable theories, Bell’s theorem, and tests of Bell inequalities. The last two chapters focus on quantum fluctuations and fluctuation-dissipation relations, beginning with Brownian motion, the Fokker-Planck equation, and classical and quantum Langevin equations. Detailed calculations are presented for the laser linewidth, spontaneous emission noise, photon statistics of linear amplifiers and attenuators, and other phenomena. Van der Waals interactions, Casimir forces, the Lifshitz theory of molecular forces between macroscopic media, and the many-body theory of such forces based on dyadic Green functions are analyzed from the perspective of Langevin noise, vacuum field fluctuations, and zero-point energy. There are numerous historical sidelights throughout the book, and approximately seventy exercises.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
10

Eriksson, Olle, Anders Bergman, Lars Bergqvist und Johan Hellsvik. Atomistic Spin Dynamics. Oxford University Press, 2017. http://dx.doi.org/10.1093/oso/9780198788669.001.0001.

Der volle Inhalt der Quelle
Annotation:
The purpose of this book is to provide a theoretical foundation and an understanding of atomistic spin-dynamics, and to give examples of where the atomistic Landau-Lifshitz-Gilbert equation can and should be used. The contents involve a description of density functional theory both from a fundamental viewpoint as well as a practical one, with several examples of how this theory can be used for the evaluation of ground state properties like spin and orbital moments, magnetic form-factors, magnetic anisotropy, Heisenberg exchange parameters, and the Gilbert damping parameter. This book also outlines how interatomic exchange interactions are relevant for the effective field used in the temporal evolution of atomistic spins. The equation of motion for atomistic spin-dynamics is derived starting from the quantum mechanical equation of motion of the spin-operator. It is shown that this lead to the atomistic Landau-Lifshitz-Gilbert equation, provided a Born-Oppenheimer-like approximation is made, where the motion of atomic spins is considered slower than that of the electrons. It is also described how finite temperature effects may enter the theory of atomistic spin-dynamics, via Langevin dynamics. Details of the practical implementation of the resulting stochastic differential equation are provided, and several examples illustrating the accuracy and importance of this method are given. Examples are given of how atomistic spin-dynamics reproduce experimental data of magnon dispersion of bulk and thin-film systems, the damping parameter, the formation of skyrmionic states, all-thermal switching motion, and ultrafast magnetization measurements.
APA, Harvard, Vancouver, ISO und andere Zitierweisen

Buchteile zum Thema "Equation de Langevin généralisé"

1

Mauri, Roberto. „Langevin Equation“. In Non-Equilibrium Thermodynamics in Multiphase Flows, 25–33. Dordrecht: Springer Netherlands, 2013. http://dx.doi.org/10.1007/978-94-007-5461-4_3.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
2

Tomé, Tânia, und Mário J. de Oliveira. „Langevin Equation“. In Graduate Texts in Physics, 43–71. Cham: Springer International Publishing, 2014. http://dx.doi.org/10.1007/978-3-319-11770-6_3.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
3

Wang, Ruiqi. „Langevin Equation“. In Encyclopedia of Systems Biology, 1092. New York, NY: Springer New York, 2013. http://dx.doi.org/10.1007/978-1-4419-9863-7_361.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
4

Risken, Hannes. „Langevin Equations“. In The Fokker-Planck Equation, 32–62. Berlin, Heidelberg: Springer Berlin Heidelberg, 1996. http://dx.doi.org/10.1007/978-3-642-61544-3_3.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
5

Gliklikh, Yuri. „The Langevin Equation“. In Applied Mathematical Sciences, 87–94. New York, NY: Springer New York, 1997. http://dx.doi.org/10.1007/978-1-4612-1866-1_5.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
6

Sandev, Trifce, und Živorad Tomovski. „Generalized Langevin Equation“. In Fractional Equations and Models, 247–300. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-29614-8_6.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
7

Pavliotis, Grigorios A. „The Langevin Equation“. In Texts in Applied Mathematics, 181–233. New York, NY: Springer New York, 2014. http://dx.doi.org/10.1007/978-1-4939-1323-7_6.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
8

Balakrishnan, V. „The Langevin Equation“. In Elements of Nonequilibrium Statistical Mechanics, 10–23. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-62233-6_2.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
9

Loos, Sarah A. M. „The Langevin Equation“. In Stochastic Systems with Time Delay, 21–75. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-80771-9_2.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
10

Phillies, George D. J. „The Langevin Equation“. In Elementary Lectures in Statistical Mechanics, 328–38. New York, NY: Springer New York, 2000. http://dx.doi.org/10.1007/978-1-4612-1264-5_30.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen

Konferenzberichte zum Thema "Equation de Langevin généralisé"

1

Gidas, Basilis. „Global optimization via the Langevin equation“. In 1985 24th IEEE Conference on Decision and Control. IEEE, 1985. http://dx.doi.org/10.1109/cdc.1985.268602.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
2

Asano, T., T. Wada, M. Ohta und N. Takigawa. „Langevin equation as a stochastic differential equation in nuclear physics“. In TOURS SYMPOSIUM ON NUCLEAR PHYSICS VI. AIP, 2007. http://dx.doi.org/10.1063/1.2713551.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
3

Metzler, Ralf. „From the Langevin equation to the fractional Fokker–Planck equation“. In Stochastic and chaotic dynamics in the lakes. AIP, 2000. http://dx.doi.org/10.1063/1.1302409.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
4

Ford, George W. „Radiation Reaction and the quantum Langevin equation“. In Frontiers in Optics. Washington, D.C.: OSA, 2014. http://dx.doi.org/10.1364/fio.2014.fth3f.4.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
5

Xiaobo Tan. „Self-organization of autonomous swarms via Langevin equation“. In 2007 46th IEEE Conference on Decision and Control. IEEE, 2007. http://dx.doi.org/10.1109/cdc.2007.4434329.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
6

Altinkaya, Mustafa A., und Ercan E. Kuruoglu. „Modeling enzymatic reactions via chemical Langevin-Levy equation“. In 2012 20th Signal Processing and Communications Applications Conference (SIU). IEEE, 2012. http://dx.doi.org/10.1109/siu.2012.6204746.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
7

ICHIKAWA, T., T. ASANO, T. WADA, M. OHTA, S. YAMAJI und H. NAKAHARA. „FISSION MODES STUDIED WITH MULTI-DIMENSIONAL LANGEVIN EQUATION“. In Proceedings of the Third International Conference. WORLD SCIENTIFIC, 2003. http://dx.doi.org/10.1142/9789812705211_0071.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
8

Price, D. A., L. R. Croft, E. U. Saritas, P. W. Goodwill und S. M. Conolly. „Large tip solution to dynamic Langevin equation for MPI“. In 2013 International Workshop on Magnetic Particle Imaging (IWMPI). IEEE, 2013. http://dx.doi.org/10.1109/iwmpi.2013.6528385.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
9

Jungemann und Meinerzhagen. „A Legendre polynomial solver for the Langevin Boltzmann equation“. In Electrical Performance of Electronic Packaging. IEEE, 2004. http://dx.doi.org/10.1109/iwce.2004.1407299.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
10

Yaghi, Shouhei. „Relation between Langevin type equation driven by the chaotic force and stochastic differential equation“. In Third tohwa university international conference on statistical physics. AIP, 2000. http://dx.doi.org/10.1063/1.1291585.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen

Berichte der Organisationen zum Thema "Equation de Langevin généralisé"

1

Nasstrom, J. Langevin equation model of dispersion in the convective boundary layer. Office of Scientific and Technical Information (OSTI), August 1998. http://dx.doi.org/10.2172/2392.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
2

Mitoma, Itaru. Weak Solution of the Langevin Equation on a Generalized Functional Space,. Fort Belvoir, VA: Defense Technical Information Center, Februar 1988. http://dx.doi.org/10.21236/ada194290.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
3

Kallianpur, G., und I. Mitoma. A Langevin-Type Stochastic Differential Equation on a Space of Generalized Functionals. Fort Belvoir, VA: Defense Technical Information Center, August 1988. http://dx.doi.org/10.21236/ada199809.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
Wir bieten Rabatte auf alle Premium-Pläne für Autoren, deren Werke in thematische Literatursammlungen aufgenommen wurden. Kontaktieren Sie uns, um einen einzigartigen Promo-Code zu erhalten!

Zur Bibliographie