Inhaltsverzeichnis
Auswahl der wissenschaftlichen Literatur zum Thema „Equation“
Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an
Machen Sie sich mit den Listen der aktuellen Artikel, Bücher, Dissertationen, Berichten und anderer wissenschaftlichen Quellen zum Thema "Equation" bekannt.
Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.
Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.
Zeitschriftenartikel zum Thema "Equation"
Karakostas, George L. „Asymptotic behavior of a certain functional equation via limiting equations“. Czechoslovak Mathematical Journal 36, Nr. 2 (1986): 259–67. http://dx.doi.org/10.21136/cmj.1986.102089.
Der volle Inhalt der QuelleParkala, Naresh, und Upender Reddy Gujjula. „Mohand Transform for Solution of Integral Equations and Abel's Equation“. International Journal of Science and Research (IJSR) 13, Nr. 5 (05.05.2024): 1188–91. http://dx.doi.org/10.21275/sr24512145111.
Der volle Inhalt der QuelleDomoshnitsky, Alexander, und Roman Koplatadze. „On Asymptotic Behavior of Solutions of Generalized Emden-Fowler Differential Equations with Delay Argument“. Abstract and Applied Analysis 2014 (2014): 1–13. http://dx.doi.org/10.1155/2014/168425.
Der volle Inhalt der QuelleBecker, Leigh, Theodore Burton und Ioannis Purnaras. „Complementary equations: a fractional differential equation and a Volterra integral equation“. Electronic Journal of Qualitative Theory of Differential Equations, Nr. 12 (2015): 1–24. http://dx.doi.org/10.14232/ejqtde.2015.1.12.
Der volle Inhalt der QuelleN O, Onuoha. „Transformation of Parabolic Partial Differential Equations into Heat Equation Using Hopf Cole Transform“. International Journal of Science and Research (IJSR) 12, Nr. 6 (05.06.2023): 1741–43. http://dx.doi.org/10.21275/sr23612082710.
Der volle Inhalt der QuelleZhao, Wenling, Hongkui Li, Xueting Liu und Fuyi Xu. „Necessary and Sufficient Conditions for the Existence of a Hermitian Positive Definite Solution of a Type of Nonlinear Matrix Equations“. Mathematical Problems in Engineering 2009 (2009): 1–13. http://dx.doi.org/10.1155/2009/672695.
Der volle Inhalt der QuelleYan, Zhenya. „Complex PT -symmetric nonlinear Schrödinger equation and Burgers equation“. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 371, Nr. 1989 (28.04.2013): 20120059. http://dx.doi.org/10.1098/rsta.2012.0059.
Der volle Inhalt der QuelleProkhorova, M. F. „Factorization of the reaction-diffusion equation, the wave equation, and other equations“. Proceedings of the Steklov Institute of Mathematics 287, S1 (27.11.2014): 156–66. http://dx.doi.org/10.1134/s0081543814090156.
Der volle Inhalt der QuelleShi, Yong-Guo, und Xiao-Bing Gong. „Linear functional equations involving Babbage’s equation“. Elemente der Mathematik 69, Nr. 4 (2014): 195–204. http://dx.doi.org/10.4171/em/263.
Der volle Inhalt der QuelleMickens, Ronald E. „Difference equation models of differential equations“. Mathematical and Computer Modelling 11 (1988): 528–30. http://dx.doi.org/10.1016/0895-7177(88)90549-3.
Der volle Inhalt der QuelleDissertationen zum Thema "Equation"
Thompson, Jeremy R. (Jeremy Ray). „Physical Motivation and Methods of Solution of Classical Partial Differential Equations“. Thesis, University of North Texas, 1995. https://digital.library.unt.edu/ark:/67531/metadc277898/.
Der volle Inhalt der QuelleHoward, Tamani M. „Hyperbolic Monge-Ampère Equation“. Thesis, University of North Texas, 2006. https://digital.library.unt.edu/ark:/67531/metadc5322/.
Der volle Inhalt der QuelleVong, Seak Weng. „Two problems on the Navier-Stokes equations and the Boltzmann equation /“. access full-text access abstract and table of contents, 2005. http://libweb.cityu.edu.hk/cgi-bin/ezdb/thesis.pl?phd-ma-b19885805a.pdf.
Der volle Inhalt der Quelle"Submitted to Department of Mathematics in partial fulfillment of the requirements for the degree of Doctor of Philosophy" Includes bibliographical references (leaves 72-77)
Guan, Meijiao. „Global questions for evolution equations Landau-Lifshitz flow and Dirac equation“. Thesis, University of British Columbia, 2009. http://hdl.handle.net/2429/22491.
Der volle Inhalt der QuelleJumarhon, Bartur. „The one dimensional heat equation and its associated Volterra integral equations“. Thesis, University of Strathclyde, 1994. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.342381.
Der volle Inhalt der QuelleBanerjee, Paromita. „Numerical Methods for Stochastic Differential Equations and Postintervention in Structural Equation Models“. Case Western Reserve University School of Graduate Studies / OhioLINK, 2021. http://rave.ohiolink.edu/etdc/view?acc_num=case1597879378514956.
Der volle Inhalt der QuelleWang, Jun. „Integral Equation Methods for the Heat Equation in Moving Geometry“. Thesis, New York University, 2017. http://pqdtopen.proquest.com/#viewpdf?dispub=10618746.
Der volle Inhalt der QuelleMany problems in physics and engineering require the solution of the heat equation in moving geometry. Integral representations are particularly appropriate in this setting since they satisfy the governing equation automatically and, in the homogeneous case, require the discretization of the space-time boundary alone. Unlike methods based on direct discretization of the partial differential equation, they are unconditonally stable. Moreover, while a naive implementation of this approach is impractical, several efforts have been made over the past few years to reduce the overall computational cost. Of particular note are Fourier-based methods which achieve optimal complexity so long as the time step Δt is of the same order as Δx, the mesh size in the spatial variables. As the time step goes to zero, however, the cost of the Fourier-based fast algorithms grows without bound. A second difficulty with existing schemes has been the lack of efficient, high-order local-in-time quadratures for layer heat potentials.
In this dissertation, we present a new method for evaluating heat potentials that makes use of a spatially adaptive mesh instead of a Fourier series, a new version of the fast Gauss transform, and a new hybrid asymptotic/numerical method for local-in-time quadrature. The method is robust and efficient for any Δt, with essentially optimal computational complexity. We demonstrate its performance with numerical examples and discuss its implications for subsequent work in diffusion, heat flow, solidification and fluid dynamics.
Grundström, John. „The Sustainability Equation“. Thesis, Umeå universitet, Arkitekthögskolan vid Umeå universitet, 2016. http://urn.kb.se/resolve?urn=urn:nbn:se:umu:diva-133151.
Der volle Inhalt der QuelleGylys-Colwell, Frederick Douglas. „An inverse problem for the anisotropic time independent wave equation /“. Thesis, Connect to this title online; UW restricted, 1993. http://hdl.handle.net/1773/5726.
Der volle Inhalt der QuelleShedlock, Andrew James. „A Numerical Method for solving the Periodic Burgers' Equation through a Stochastic Differential Equation“. Thesis, Virginia Tech, 2021. http://hdl.handle.net/10919/103947.
Der volle Inhalt der QuelleMaster of Science
Burgers equation is a Partial Differential Equation (PDE) used to model how fluids evolve in time based on some initial condition and viscosity parameter. This viscosity parameter helps describe how the energy in a fluid dissipates. When studying partial differential equations, it is often hard to find a closed form solution to the problem, so we often approximate the solution with numerical methods. As our viscosity parameter approaches 0, many numerical methods develop problems and may no longer accurately compute the solution. Using random variables, we develop an approximation algorithm and test our numerical method on various types of initial conditions with small viscosity coefficients.
Bücher zum Thema "Equation"
Selvadurai, A. P. S. Partial Differential Equations in Mechanics 1: Fundamentals, Laplace's Equation, Diffusion Equation, Wave Equation. Berlin, Heidelberg: Springer Berlin Heidelberg, 2000.
Den vollen Inhalt der Quelle findenTam, Kenneth. The earther equation: The fourth equations novel. Waterloo, ON: Iceberg Pub., 2005.
Den vollen Inhalt der Quelle findenTam, Kenneth. The vengeance equation: The sixth equations novel. Waterloo, Ont: Iceberg, 2007.
Den vollen Inhalt der Quelle findenTam, Kenneth. The alien equation: The second equations novel. Waterloo, ON: Iceberg Pub., 2004.
Den vollen Inhalt der Quelle findenTam, Kenneth. The human equation: The first equations novel. Waterloo, ON: Iceberg Pub., 2003.
Den vollen Inhalt der Quelle findenTam, Kenneth. The genesis equation: The fifth equations novel. Waterloo, ON: Iceberg, 2006.
Den vollen Inhalt der Quelle findenBejenaru, Ioan. Near soliton evolution for equivariant Schrödinger maps in two spatial dimensions. Providence, Rhode Island: American Mathematical Society, 2013.
Den vollen Inhalt der Quelle findenDante's equation. London: Orbit, 2003.
Den vollen Inhalt der Quelle findenBarbeau, Edward J. Pell’s Equation. New York, NY: Springer New York, 2003. http://dx.doi.org/10.1007/b97610.
Der volle Inhalt der QuelleDante's equation. London: Orbit, 2004.
Den vollen Inhalt der Quelle findenBuchteile zum Thema "Equation"
Horgmo Jæger, Karoline, und Aslak Tveito. „The Cable Equation“. In Differential Equations for Studies in Computational Electrophysiology, 79–91. Cham: Springer Nature Switzerland, 2023. http://dx.doi.org/10.1007/978-3-031-30852-9_9.
Der volle Inhalt der QuelleHorgmo Jæger, Karoline, und Aslak Tveito. „A Simple Cable Equation“. In Differential Equations for Studies in Computational Electrophysiology, 47–52. Cham: Springer Nature Switzerland, 2023. http://dx.doi.org/10.1007/978-3-031-30852-9_6.
Der volle Inhalt der QuelleKurasov, Pavel. „The Characteristic Equation“. In Operator Theory: Advances and Applications, 97–122. Berlin, Heidelberg: Springer Berlin Heidelberg, 2023. http://dx.doi.org/10.1007/978-3-662-67872-5_5.
Der volle Inhalt der QuelleKavdia, Mahendra. „Parabolic Differential Equations, Diffusion Equation“. In Encyclopedia of Systems Biology, 1621–24. New York, NY: Springer New York, 2013. http://dx.doi.org/10.1007/978-1-4419-9863-7_273.
Der volle Inhalt der QuelleSleeman, Brian D. „Partial Differential Equations, Poisson Equation“. In Encyclopedia of Systems Biology, 1635–38. New York, NY: Springer New York, 2013. http://dx.doi.org/10.1007/978-1-4419-9863-7_274.
Der volle Inhalt der QuelleClayton, Richard H. „Partial Differential Equations, Wave Equation“. In Encyclopedia of Systems Biology, 1638–40. New York, NY: Springer New York, 2013. http://dx.doi.org/10.1007/978-1-4419-9863-7_275.
Der volle Inhalt der QuelleBrenig, Wilhelm. „Rate Equations (Master Equation, Stosszahlansatz)“. In Statistical Theory of Heat, 158–63. Berlin, Heidelberg: Springer Berlin Heidelberg, 1989. http://dx.doi.org/10.1007/978-3-642-74685-7_32.
Der volle Inhalt der QuelleRapp, Christoph. „Basic equations“. In Hydraulics in Civil Engineering, 51–69. Cham: Springer Nature Switzerland, 2024. http://dx.doi.org/10.1007/978-3-031-54860-4_5.
Der volle Inhalt der QuelleParker, David F. „Laplace’s Equation and Poisson’s Equation“. In Springer Undergraduate Mathematics Series, 55–76. London: Springer London, 2003. http://dx.doi.org/10.1007/978-1-4471-0019-5_4.
Der volle Inhalt der QuelleGoodair, Daniel, und Dan Crisan. „On the 3D Navier-Stokes Equations with Stochastic Lie Transport“. In Mathematics of Planet Earth, 53–110. Cham: Springer Nature Switzerland, 2023. http://dx.doi.org/10.1007/978-3-031-40094-0_4.
Der volle Inhalt der QuelleKonferenzberichte zum Thema "Equation"
Cohen, Leon. „Phase-space equation for wave equations“. In ICA 2013 Montreal. ASA, 2013. http://dx.doi.org/10.1121/1.4800400.
Der volle Inhalt der QuelleRoy, Subhro, Shyam Upadhyay und Dan Roth. „Equation Parsing : Mapping Sentences to Grounded Equations“. In Proceedings of the 2016 Conference on Empirical Methods in Natural Language Processing. Stroudsburg, PA, USA: Association for Computational Linguistics, 2016. http://dx.doi.org/10.18653/v1/d16-1117.
Der volle Inhalt der QuelleMikhailov, M. S., und A. A. Komarov. „Combining Parabolic Equation Method with Surface Integral Equations“. In 2019 PhotonIcs & Electromagnetics Research Symposium - Spring (PIERS-Spring). IEEE, 2019. http://dx.doi.org/10.1109/piers-spring46901.2019.9017786.
Der volle Inhalt der QuelleTAKEYAMA, YOSHIHIRO. „DIFFERENTIAL EQUATIONS COMPATIBLE WITH BOUNDARY RATIONAL qKZ EQUATION“. In Proceedings of the Infinite Analysis 09. WORLD SCIENTIFIC, 2010. http://dx.doi.org/10.1142/9789814324373_0021.
Der volle Inhalt der QuelleIsserstedt, Philipp, Christian Fischer und Thorsten Steinert. „QCD’s equation of state from Dyson-Schwinger equations“. In FAIR next generation scientists - 7th Edition Workshop. Trieste, Italy: Sissa Medialab, 2023. http://dx.doi.org/10.22323/1.419.0024.
Der volle Inhalt der QuelleSharifi, J., und H. Momeni. „Optimal control equation for quantum stochastic differential equations“. In 2010 49th IEEE Conference on Decision and Control (CDC). IEEE, 2010. http://dx.doi.org/10.1109/cdc.2010.5717172.
Der volle Inhalt der QuelleFreire, Igor Leite, und Priscila Leal da Silva. „An equation unifying both Camassa-Holm and Novikov equations“. In The 10th AIMS Conference on Dynamical Systems, Differential Equations and Applications (Madrid, Spain). American Institute of Mathematical Sciences, 2015. http://dx.doi.org/10.3934/proc.2015.0304.
Der volle Inhalt der QuellePang, Subeen, und George Barbastathis. „Robust Transport-of-Intensity Equation with Neural Differential Equations“. In Computational Optical Sensing and Imaging. Washington, D.C.: Optica Publishing Group, 2023. http://dx.doi.org/10.1364/cosi.2023.cth4d.4.
Der volle Inhalt der QuelleBui, T. T., und V. Popov. „Radial basis integral equation method for Navier-Stokes equations“. In BEM/MRM 2009. Southampton, UK: WIT Press, 2009. http://dx.doi.org/10.2495/be090131.
Der volle Inhalt der QuelleVălcan, Teodor-Dumitru. „From Diofantian Equations To Matricial Equations (Ii) -Generalizations Of The Pythagorean Equation-“. In 9th International Conference Education, Reflection, Development. European Publisher, 2022. http://dx.doi.org/10.15405/epes.22032.63.
Der volle Inhalt der QuelleBerichte der Organisationen zum Thema "Equation"
Lettau, Martin, und Sydney Ludvigson. Euler Equation Errors. Cambridge, MA: National Bureau of Economic Research, September 2005. http://dx.doi.org/10.3386/w11606.
Der volle Inhalt der QuelleBoyd, Zachary M., Scott D. Ramsey und Roy S. Baty. Symmetries of the Euler compressible flow equations for general equation of state. Office of Scientific and Technical Information (OSTI), Oktober 2015. http://dx.doi.org/10.2172/1223765.
Der volle Inhalt der QuelleMickens, Ronald E. Mathematical and Numerical Studies of Nonstandard Difference Equation Models of Differential Equations. Office of Scientific and Technical Information (OSTI), Dezember 2008. http://dx.doi.org/10.2172/965764.
Der volle Inhalt der QuelleGrinfeld, M. A. Operational Equations of State. 1. A Novel Equation of State for Hydrocode. Fort Belvoir, VA: Defense Technical Information Center, September 2011. http://dx.doi.org/10.21236/ada553223.
Der volle Inhalt der QuelleMenikoff, Ralph. JWL Equation of State. Office of Scientific and Technical Information (OSTI), Dezember 2015. http://dx.doi.org/10.2172/1229709.
Der volle Inhalt der QuelleGrove, John W. xRage Equation of State. Office of Scientific and Technical Information (OSTI), August 2016. http://dx.doi.org/10.2172/1304734.
Der volle Inhalt der QuelleSCIENCE AND TECHNOLOGY CORP HAMPTON VA. Analytic Parabolic Equation Solutions. Fort Belvoir, VA: Defense Technical Information Center, November 1989. http://dx.doi.org/10.21236/ada218588.
Der volle Inhalt der QuelleFujisaki, Masatoshi. Normed Bellman Equation with Degenerate Diffusion Coefficients and Its Application to Differential Equations. Fort Belvoir, VA: Defense Technical Information Center, Oktober 1987. http://dx.doi.org/10.21236/ada190319.
Der volle Inhalt der QuelleUhlman, J. S., und Jr. An Integral Equation Formulation of the Equations of Motion of an Incompressible Fluid. Fort Belvoir, VA: Defense Technical Information Center, Juli 1992. http://dx.doi.org/10.21236/ada416252.
Der volle Inhalt der QuelleGrinfeld, Michael. The Operational Equations of State, 4: The Dulong-Petit Equation of State for Hydrocode. Fort Belvoir, VA: Defense Technical Information Center, Juli 2012. http://dx.doi.org/10.21236/ada568915.
Der volle Inhalt der Quelle