Zeitschriftenartikel zum Thema „Epigenomic regulators“
Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an
Machen Sie sich mit Top-50 Zeitschriftenartikel für die Forschung zum Thema "Epigenomic regulators" bekannt.
Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.
Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.
Sehen Sie die Zeitschriftenartikel für verschiedene Spezialgebieten durch und erstellen Sie Ihre Bibliographie auf korrekte Weise.
Al-Janabi, Ismail. "Therapeutic Targeting of the Regulators of Cancer Epigenomes." Al-Rafidain Journal of Medical Sciences ( ISSN 2789-3219 ) 5 (July 1, 2023): 1–13. http://dx.doi.org/10.54133/ajms.v5i.128.
Der volle Inhalt der QuellePaul, Aswathy Mary, Madhavan Radhakrishna Pillai, and Rakesh Kumar. "Prognostic Significance of Dysregulated Epigenomic and Chromatin Modifiers in Cervical Cancer." Cells 10, no. 10 (2021): 2665. http://dx.doi.org/10.3390/cells10102665.
Der volle Inhalt der QuelleSchmitz, Ulf, Jaynish S. Shah, Bijay P. Dhungel, et al. "Widespread Aberrant Alternative Splicing despite Molecular Remission in Chronic Myeloid Leukaemia Patients." Cancers 12, no. 12 (2020): 3738. http://dx.doi.org/10.3390/cancers12123738.
Der volle Inhalt der QuelleTseng, Yen-Tzu, Hung-Fu Liao, Chih-Yun Yu, Chu-Fan Mo, and Shau-Ping Lin. "Epigenetic factors in the regulation of prospermatogonia and spermatogonial stem cells." REPRODUCTION 150, no. 3 (2015): R77—R91. http://dx.doi.org/10.1530/rep-14-0679.
Der volle Inhalt der QuelleZhou, Huaijun. "97 Dissection of Evolution of Cis-Regulatory Elements and Its Application on Genetic Control of Complex Traits in Farm Animals." Journal of Animal Science 101, Supplement_3 (2023): 51–52. http://dx.doi.org/10.1093/jas/skad281.063.
Der volle Inhalt der QuelleDeng, Xian, Xianwei Song, Liya Wei, Chunyan Liu, and Xiaofeng Cao. "Epigenetic regulation and epigenomic landscape in rice." National Science Review 3, no. 3 (2016): 309–27. http://dx.doi.org/10.1093/nsr/nww042.
Der volle Inhalt der QuelleRada-Iglesias, Alvaro, Ruchi Bajpai, Sara Prescott, Samantha A. Brugmann, Tomek Swigut, and Joanna Wysocka. "Epigenomic Annotation of Enhancers Predicts Transcriptional Regulators of Human Neural Crest." Cell Stem Cell 11, no. 5 (2012): 633–48. http://dx.doi.org/10.1016/j.stem.2012.07.006.
Der volle Inhalt der QuelleSmetanina, Mariya A., Valeria A. Korolenya, Alexander E. Kel, et al. "Epigenome-Wide Changes in the Cell Layers of the Vein Wall When Exposing the Venous Endothelium to Oscillatory Shear Stress." Epigenomes 7, no. 1 (2023): 8. http://dx.doi.org/10.3390/epigenomes7010008.
Der volle Inhalt der QuelleBoix, Carles A., Benjamin T. James, Yongjin P. Park, Wouter Meuleman, and Manolis Kellis. "Regulatory genomic circuitry of human disease loci by integrative epigenomics." Nature 590, no. 7845 (2021): 300–307. http://dx.doi.org/10.1038/s41586-020-03145-z.
Der volle Inhalt der QuelleWilliams, Ruth M., Guneş Taylor, Irving T. C. Ling, et al. "Chromatin remodeller Chd7 is developmentally regulated in the neural crest by tissue-specific transcription factors." PLOS Biology 22, no. 10 (2024): e3002786. http://dx.doi.org/10.1371/journal.pbio.3002786.
Der volle Inhalt der QuelleKumar, Suresh, Pallavi ., Ashok K. Singh, and Trilochan Mohapatra. "Recent advances in epigenomic techniques: Analysis of DNA base modifications." Indian Journal of Genetics and Plant Breeding (The) 84, no. 02 (2024): 143–55. http://dx.doi.org/10.31742/isgpb.84.2.1.
Der volle Inhalt der Quellekong, ranran, Ayushi S. Patel, Takashi Sato, et al. "Abstract 5709: Transcriptional circuitry of NKX2-1 and SOX1 defines a previously unrecognized lineage subtype of small cell lung cancer." Cancer Research 82, no. 12_Supplement (2022): 5709. http://dx.doi.org/10.1158/1538-7445.am2022-5709.
Der volle Inhalt der QuelleLu, Jia, Xiaoyi Cao, and Sheng Zhong. "EpiAlignment: alignment with both DNA sequence and epigenomic data." Nucleic Acids Research 47, W1 (2019): W11—W19. http://dx.doi.org/10.1093/nar/gkz426.
Der volle Inhalt der QuelleBond, Danielle R., Kumar Uddipto, Anoop K. Enjeti, and Heather J. Lee. "Single-cell epigenomics in cancer: charting a course to clinical impact." Epigenomics 12, no. 13 (2020): 1139–51. http://dx.doi.org/10.2217/epi-2020-0046.
Der volle Inhalt der QuelleGolimbet, V. E., A. K. Golov, and N. V. Kondratyev. "Post-GWAS era in genetics of schizophrenia." V.M. BEKHTEREV REVIEW OF PSYCHIATRY AND MEDICAL PSYCHOLOGY, no. 4-1 (December 9, 2019): 6–7. http://dx.doi.org/10.31363/2313-7053-2019-4-1-6-7.
Der volle Inhalt der QuelleBrunmeir, Reinhard, Jingyi Wu, Xu Peng, et al. "Comparative Transcriptomic and Epigenomic Analyses Reveal New Regulators of Murine Brown Adipogenesis." PLOS Genetics 12, no. 12 (2016): e1006474. http://dx.doi.org/10.1371/journal.pgen.1006474.
Der volle Inhalt der QuelleBinder, Moritz, Alexandre Gaspar Maia, Ryan M. Carr, et al. "Epigenomic Determinants of Transcriptional Activity in ASXL1-Mutant Chronic Myelomonocytic Leukemia." Blood 134, Supplement_1 (2019): 2987. http://dx.doi.org/10.1182/blood-2019-123191.
Der volle Inhalt der QuelleCescon, DW. "Abstract ES13-3: Novel epigenomic targets in TNBC." Cancer Research 82, no. 4_Supplement (2022): ES13–3—ES13–3. http://dx.doi.org/10.1158/1538-7445.sabcs21-es13-3.
Der volle Inhalt der QuelleBlank-Giwojna, Alena, Anna Postepska-Igielska, and Ingrid Grummt. "lncRNA KHPS1 Activates a Poised Enhancer by Triplex-Dependent Recruitment of Epigenomic Regulators." Cell Reports 26, no. 11 (2019): 2904–15. http://dx.doi.org/10.1016/j.celrep.2019.02.059.
Der volle Inhalt der QuelleYildirim, Ferah, Christopher W. Ng, Vincent Kappes, et al. "Early epigenomic and transcriptional changes reveal Elk-1 transcription factor as a therapeutic target in Huntington’s disease." Proceedings of the National Academy of Sciences 116, no. 49 (2019): 24840–51. http://dx.doi.org/10.1073/pnas.1908113116.
Der volle Inhalt der QuelleWattacheril, Julia J., Srilakshmi Raj, David A. Knowles, and John M. Greally. "Using epigenomics to understand cellular responses to environmental influences in diseases." PLOS Genetics 19, no. 1 (2023): e1010567. http://dx.doi.org/10.1371/journal.pgen.1010567.
Der volle Inhalt der QuelleRovira, Meritxell, Goutham Atla, Miguel Angel Maestro, et al. "REST is a major negative regulator of endocrine differentiation during pancreas organogenesis." Genes & Development 35, no. 17-18 (2021): 1229–42. http://dx.doi.org/10.1101/gad.348501.121.
Der volle Inhalt der QuelleZibetti, Cristina. "Deciphering the Retinal Epigenome during Development, Disease and Reprogramming: Advancements, Challenges and Perspectives." Cells 11, no. 5 (2022): 806. http://dx.doi.org/10.3390/cells11050806.
Der volle Inhalt der QuelleTorres-Campana, Daniela, Béatrice Horard, Sandrine Denaud, Gérard Benoit, Benjamin Loppin, and Guillermo A. Orsi. "Three classes of epigenomic regulators converge to hyperactivate the essential maternal gene deadhead within a heterochromatin mini-domain." PLOS Genetics 18, no. 1 (2022): e1009615. http://dx.doi.org/10.1371/journal.pgen.1009615.
Der volle Inhalt der QuelleMalta, Tathiane, Thais Sabedot, Indrani Datta, et al. "OTEH-10. Evolutionary trajectory of epigenomic of gliomas." Neuro-Oncology Advances 3, Supplement_2 (2021): ii12. http://dx.doi.org/10.1093/noajnl/vdab070.049.
Der volle Inhalt der QuelleDuraisingh, Manoj T., and Kristen M. Skillman. "Epigenetic Variation and Regulation in Malaria Parasites." Annual Review of Microbiology 72, no. 1 (2018): 355–75. http://dx.doi.org/10.1146/annurev-micro-090817-062722.
Der volle Inhalt der QuelleWu, Tuoqi, Ziang Zhu, Safuwra Wizzard, and Chen Yao. "Joint single-cell transcriptomic and epigenomic analysis reveals key regulators of CAR T cell stemness and antitumor immunity." Journal of Immunology 212, no. 1_Supplement (2024): 1425_4772. http://dx.doi.org/10.4049/jimmunol.212.supp.1425.4772.
Der volle Inhalt der QuelleTan, Jiaxing, Yali Ding, Bing He, et al. "Abstract 2727: Histone deacetylase (HDAC1) and IKAROS are critical regulators of histone methylation and epigenomic landscape in T-cell acute lymphoblastic leukemia." Cancer Research 85, no. 8_Supplement_1 (2025): 2727. https://doi.org/10.1158/1538-7445.am2025-2727.
Der volle Inhalt der QuelleLi, Cong-Jun, and Robert W. Li. "Bioinformatic Dissecting of TP53 Regulation Pathway Underlying Butyrate-induced Histone Modification in Epigenetic Regulation." Genetics & Epigenetics 6 (January 2014): GEG.S14176. http://dx.doi.org/10.4137/geg.s14176.
Der volle Inhalt der QuelleWan, Chunhua, Sylvia Mahara, Claire Sun та ін. "Genome-scale CRISPR-Cas9 screen of Wnt/β-catenin signaling identifies therapeutic targets for colorectal cancer". Science Advances 7, № 21 (2021): eabf2567. http://dx.doi.org/10.1126/sciadv.abf2567.
Der volle Inhalt der QuelleZhang, Kai, Mengchi Wang, Ying Zhao, and Wei Wang. "Taiji: System-level identification of key transcription factors reveals transcriptional waves in mouse embryonic development." Science Advances 5, no. 3 (2019): eaav3262. http://dx.doi.org/10.1126/sciadv.aav3262.
Der volle Inhalt der QuelleSun, Qian-Hui, Zi-Yu Kuang, Guang-Hui Zhu, Bao-Yi Ni, and Jie Li. "Multifaceted role of microRNAs in gastric cancer stem cells: Mechanisms and potential biomarkers." World Journal of Gastrointestinal Oncology 16, no. 2 (2024): 300–313. http://dx.doi.org/10.4251/wjgo.v16.i2.300.
Der volle Inhalt der QuelleAyyamperumal, Parichitran, Hemant Chandru Naik, Amlan Jyoti Naskar, Lakshmi Sowjanya Bammidi, and Srimonta Gayen. "Epigenomic states contribute to coordinated allelic transcriptional bursting in iPSC reprogramming." Life Science Alliance 7, no. 4 (2024): e202302337. http://dx.doi.org/10.26508/lsa.202302337.
Der volle Inhalt der QuelleNam, Chehyun. "Abstract 4461: Unveiling the links between methionine metabolism and epigenomic reprogramming in upper aerodigestive squamous cell carcinoma." Cancer Research 84, no. 6_Supplement (2024): 4461. http://dx.doi.org/10.1158/1538-7445.am2024-4461.
Der volle Inhalt der QuelleBolitho, Annabelle, and Hongbing Liu. "Epigenetic Regulation in Wilms Tumor." Biomedicines 13, no. 7 (2025): 1678. https://doi.org/10.3390/biomedicines13071678.
Der volle Inhalt der QuelleKurowska, Aleksandra, Azari Bantan, Raghad Shuwaikan, et al. "Mapping Disease Transitions from Premalignant, Asymptomatic to Advanced Myeloma through Integrative Epigenomic and Transcriptional Analyses." Blood 144, Supplement 1 (2024): 1889. https://doi.org/10.1182/blood-2024-209833.
Der volle Inhalt der QuelleMcKinsey, Timothy A., Thomas M. Vondriska, and Yibin Wang. "Epigenomic regulation of heart failure: integrating histone marks, long noncoding RNAs, and chromatin architecture." F1000Research 7 (October 29, 2018): 1713. http://dx.doi.org/10.12688/f1000research.15797.1.
Der volle Inhalt der QuelleSiu, Celia, Sam Wiseman, Sitanshu Gakkhar, et al. "Characterization of the human thyroid epigenome." Journal of Endocrinology 235, no. 2 (2017): 153–65. http://dx.doi.org/10.1530/joe-17-0145.
Der volle Inhalt der QuelleSobocińska, Joanna, Sara Molenda, Marta Machnik, and Urszula Oleksiewicz. "KRAB-ZFP Transcriptional Regulators Acting as Oncogenes and Tumor Suppressors: An Overview." International Journal of Molecular Sciences 22, no. 4 (2021): 2212. http://dx.doi.org/10.3390/ijms22042212.
Der volle Inhalt der QuelleYi, Mei, Yixin Tan, Li Wang, et al. "TP63 links chromatin remodeling and enhancer reprogramming to epidermal differentiation and squamous cell carcinoma development." Cellular and Molecular Life Sciences 77, no. 21 (2020): 4325–46. http://dx.doi.org/10.1007/s00018-020-03539-2.
Der volle Inhalt der QuelleEl Zarif, Talal, Karl Semaan, Marc Eid, et al. "Epigenomic profiling nominates master transcription factors (TFs) driving sarcomatoid differentiation (SD) of renal cell carcinoma (RCC)." Oncologist 28, Supplement_1 (2023): S8. http://dx.doi.org/10.1093/oncolo/oyad216.012.
Der volle Inhalt der QuelleVolpato, Viola. "Integration of functional genomics data to uncover cell type-specific pathways affected in Parkinson's disease." Biochemical Society Transactions 49, no. 5 (2021): 2091–100. http://dx.doi.org/10.1042/bst20210128.
Der volle Inhalt der QuelleYamagishi, Makoto. "The role of epigenetics in T-cell lymphoma." International Journal of Hematology, October 14, 2022. http://dx.doi.org/10.1007/s12185-022-03470-1.
Der volle Inhalt der QuelleBell, Christopher G. "Epigenomic insights into common human disease pathology." Cellular and Molecular Life Sciences 81, no. 1 (2024). http://dx.doi.org/10.1007/s00018-024-05206-2.
Der volle Inhalt der QuelleHenaff, Carole Le, Nicola Partridge, Frederic Jehan, and Valerie Geoffroy. "Identification of epigenomic regulators of osteoblast function." Bone Abstracts, April 21, 2016. http://dx.doi.org/10.1530/boneabs.5.p249.
Der volle Inhalt der QuelleSikora, Matthew Joseph, and Joseph Sottnik. "Estrogen Receptor co-opts Mediator of DNA Damage Checkpoint 1 (MDC1) to Drive Epigenomic Remodeling and Transcriptional Regulation in ILC Cells." Endocrinology 166, Supplement_1 (2025). https://doi.org/10.1210/endocr/bqaf043.007.
Der volle Inhalt der QuelleLee, Ji-Eun, Hannah Schmidt, Binbin Lai, and Kai Ge. "Transcriptional and Epigenomic Regulation of Adipogenesis." Molecular and Cellular Biology 39, no. 11 (2019). http://dx.doi.org/10.1128/mcb.00601-18.
Der volle Inhalt der QuellePandey, Saurabh Prakash, Ruben M. Benstein, Yanwei Wang, and Markus Schmid. "Epigenetic Regulation of Temperature Responses – Past Successes and Future Challenges." Journal of Experimental Botany, May 29, 2021. http://dx.doi.org/10.1093/jxb/erab248.
Der volle Inhalt der QuelleAbdulla, Amith Z., Cédric Vaillant, and Daniel Jost. "Painters in chromatin: a unified quantitative framework to systematically characterize epigenome regulation and memory." Nucleic Acids Research, August 26, 2022. http://dx.doi.org/10.1093/nar/gkac702.
Der volle Inhalt der QuelleZhao, Yanding, Yadong Dong, Wei Hong, Chongming Jiang, Kevin Yao, and Chao Cheng. "Computational modeling of chromatin accessibility identified important epigenomic regulators." BMC Genomics 23, no. 1 (2022). http://dx.doi.org/10.1186/s12864-021-08234-5.
Der volle Inhalt der Quelle