Zeitschriftenartikel zum Thema „Epigenomic regulators“
Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an
Machen Sie sich mit Top-50 Zeitschriftenartikel für die Forschung zum Thema "Epigenomic regulators" bekannt.
Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.
Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.
Sehen Sie die Zeitschriftenartikel für verschiedene Spezialgebieten durch und erstellen Sie Ihre Bibliographie auf korrekte Weise.
Al-Janabi, Ismail. „Therapeutic Targeting of the Regulators of Cancer Epigenomes“. Al-Rafidain Journal of Medical Sciences ( ISSN 2789-3219 ) 5 (01.07.2023): 1–13. http://dx.doi.org/10.54133/ajms.v5i.128.
Der volle Inhalt der QuellePaul, Aswathy Mary, Madhavan Radhakrishna Pillai und Rakesh Kumar. „Prognostic Significance of Dysregulated Epigenomic and Chromatin Modifiers in Cervical Cancer“. Cells 10, Nr. 10 (05.10.2021): 2665. http://dx.doi.org/10.3390/cells10102665.
Der volle Inhalt der QuelleSchmitz, Ulf, Jaynish S. Shah, Bijay P. Dhungel, Geoffray Monteuuis, Phuc-Loi Luu, Veronika Petrova, Cynthia Metierre et al. „Widespread Aberrant Alternative Splicing despite Molecular Remission in Chronic Myeloid Leukaemia Patients“. Cancers 12, Nr. 12 (11.12.2020): 3738. http://dx.doi.org/10.3390/cancers12123738.
Der volle Inhalt der QuelleZhou, Huaijun. „97 Dissection of Evolution of Cis-Regulatory Elements and Its Application on Genetic Control of Complex Traits in Farm Animals“. Journal of Animal Science 101, Supplement_3 (06.11.2023): 51–52. http://dx.doi.org/10.1093/jas/skad281.063.
Der volle Inhalt der QuelleTseng, Yen-Tzu, Hung-Fu Liao, Chih-Yun Yu, Chu-Fan Mo und Shau-Ping Lin. „Epigenetic factors in the regulation of prospermatogonia and spermatogonial stem cells“. REPRODUCTION 150, Nr. 3 (September 2015): R77—R91. http://dx.doi.org/10.1530/rep-14-0679.
Der volle Inhalt der QuelleDeng, Xian, Xianwei Song, Liya Wei, Chunyan Liu und Xiaofeng Cao. „Epigenetic regulation and epigenomic landscape in rice“. National Science Review 3, Nr. 3 (01.09.2016): 309–27. http://dx.doi.org/10.1093/nsr/nww042.
Der volle Inhalt der QuelleRada-Iglesias, Alvaro, Ruchi Bajpai, Sara Prescott, Samantha A. Brugmann, Tomek Swigut und Joanna Wysocka. „Epigenomic Annotation of Enhancers Predicts Transcriptional Regulators of Human Neural Crest“. Cell Stem Cell 11, Nr. 5 (November 2012): 633–48. http://dx.doi.org/10.1016/j.stem.2012.07.006.
Der volle Inhalt der QuelleSmetanina, Mariya A., Valeria A. Korolenya, Alexander E. Kel, Ksenia S. Sevostyanova, Konstantin A. Gavrilov, Andrey I. Shevela und Maxim L. Filipenko. „Epigenome-Wide Changes in the Cell Layers of the Vein Wall When Exposing the Venous Endothelium to Oscillatory Shear Stress“. Epigenomes 7, Nr. 1 (20.03.2023): 8. http://dx.doi.org/10.3390/epigenomes7010008.
Der volle Inhalt der QuelleBoix, Carles A., Benjamin T. James, Yongjin P. Park, Wouter Meuleman und Manolis Kellis. „Regulatory genomic circuitry of human disease loci by integrative epigenomics“. Nature 590, Nr. 7845 (03.02.2021): 300–307. http://dx.doi.org/10.1038/s41586-020-03145-z.
Der volle Inhalt der Quellekong, ranran, Ayushi S. Patel, Takashi Sato, Seungyeul Yoo, Abhilasha Sinha, Yang Tian, Feng Jiang et al. „Abstract 5709: Transcriptional circuitry of NKX2-1 and SOX1 defines a previously unrecognized lineage subtype of small cell lung cancer“. Cancer Research 82, Nr. 12_Supplement (15.06.2022): 5709. http://dx.doi.org/10.1158/1538-7445.am2022-5709.
Der volle Inhalt der QuelleBrunmeir, Reinhard, Jingyi Wu, Xu Peng, Sun-Yee Kim, Sofi G. Julien, Qiongyi Zhang, Wei Xie und Feng Xu. „Comparative Transcriptomic and Epigenomic Analyses Reveal New Regulators of Murine Brown Adipogenesis“. PLOS Genetics 12, Nr. 12 (06.12.2016): e1006474. http://dx.doi.org/10.1371/journal.pgen.1006474.
Der volle Inhalt der QuelleGolimbet, V. E., A. K. Golov und N. V. Kondratyev. „Post-GWAS era in genetics of schizophrenia“. V.M. BEKHTEREV REVIEW OF PSYCHIATRY AND MEDICAL PSYCHOLOGY, Nr. 4-1 (09.12.2019): 6–7. http://dx.doi.org/10.31363/2313-7053-2019-4-1-6-7.
Der volle Inhalt der QuelleLu, Jia, Xiaoyi Cao und Sheng Zhong. „EpiAlignment: alignment with both DNA sequence and epigenomic data“. Nucleic Acids Research 47, W1 (22.05.2019): W11—W19. http://dx.doi.org/10.1093/nar/gkz426.
Der volle Inhalt der QuelleBond, Danielle R., Kumar Uddipto, Anoop K. Enjeti und Heather J. Lee. „Single-cell epigenomics in cancer: charting a course to clinical impact“. Epigenomics 12, Nr. 13 (Juli 2020): 1139–51. http://dx.doi.org/10.2217/epi-2020-0046.
Der volle Inhalt der QuelleBinder, Moritz, Alexandre Gaspar Maia, Ryan M. Carr, Christopher Pin, Kurt Berger, Bonnie Alver, Keith Robertson, David Marks, Martin Fernandez-Zapico und Mrinal M. Patnaik. „Epigenomic Determinants of Transcriptional Activity in ASXL1-Mutant Chronic Myelomonocytic Leukemia“. Blood 134, Supplement_1 (13.11.2019): 2987. http://dx.doi.org/10.1182/blood-2019-123191.
Der volle Inhalt der QuelleCescon, DW. „Abstract ES13-3: Novel epigenomic targets in TNBC“. Cancer Research 82, Nr. 4_Supplement (15.02.2022): ES13–3—ES13–3. http://dx.doi.org/10.1158/1538-7445.sabcs21-es13-3.
Der volle Inhalt der QuelleBlank-Giwojna, Alena, Anna Postepska-Igielska und Ingrid Grummt. „lncRNA KHPS1 Activates a Poised Enhancer by Triplex-Dependent Recruitment of Epigenomic Regulators“. Cell Reports 26, Nr. 11 (März 2019): 2904–15. http://dx.doi.org/10.1016/j.celrep.2019.02.059.
Der volle Inhalt der QuelleYildirim, Ferah, Christopher W. Ng, Vincent Kappes, Tobias Ehrenberger, Siobhan K. Rigby, Victoria Stivanello, Theresa A. Gipson et al. „Early epigenomic and transcriptional changes reveal Elk-1 transcription factor as a therapeutic target in Huntington’s disease“. Proceedings of the National Academy of Sciences 116, Nr. 49 (19.11.2019): 24840–51. http://dx.doi.org/10.1073/pnas.1908113116.
Der volle Inhalt der QuelleWattacheril, Julia J., Srilakshmi Raj, David A. Knowles und John M. Greally. „Using epigenomics to understand cellular responses to environmental influences in diseases“. PLOS Genetics 19, Nr. 1 (19.01.2023): e1010567. http://dx.doi.org/10.1371/journal.pgen.1010567.
Der volle Inhalt der QuelleRovira, Meritxell, Goutham Atla, Miguel Angel Maestro, Vane Grau, Javier García-Hurtado, Maria Maqueda, Jose Luis Mosquera et al. „REST is a major negative regulator of endocrine differentiation during pancreas organogenesis“. Genes & Development 35, Nr. 17-18 (12.08.2021): 1229–42. http://dx.doi.org/10.1101/gad.348501.121.
Der volle Inhalt der QuelleTorres-Campana, Daniela, Béatrice Horard, Sandrine Denaud, Gérard Benoit, Benjamin Loppin und Guillermo A. Orsi. „Three classes of epigenomic regulators converge to hyperactivate the essential maternal gene deadhead within a heterochromatin mini-domain“. PLOS Genetics 18, Nr. 1 (04.01.2022): e1009615. http://dx.doi.org/10.1371/journal.pgen.1009615.
Der volle Inhalt der QuelleZibetti, Cristina. „Deciphering the Retinal Epigenome during Development, Disease and Reprogramming: Advancements, Challenges and Perspectives“. Cells 11, Nr. 5 (25.02.2022): 806. http://dx.doi.org/10.3390/cells11050806.
Der volle Inhalt der QuelleMalta, Tathiane, Thais Sabedot, Indrani Datta, Frederick Varn, AnaValeria Castro, Luciano Garofano, Roel Verhaak, Antonio Iavarone, Laila Poisson und Houtan Noushmehr. „OTEH-10. Evolutionary trajectory of epigenomic of gliomas“. Neuro-Oncology Advances 3, Supplement_2 (01.07.2021): ii12. http://dx.doi.org/10.1093/noajnl/vdab070.049.
Der volle Inhalt der QuelleDuraisingh, Manoj T., und Kristen M. Skillman. „Epigenetic Variation and Regulation in Malaria Parasites“. Annual Review of Microbiology 72, Nr. 1 (08.09.2018): 355–75. http://dx.doi.org/10.1146/annurev-micro-090817-062722.
Der volle Inhalt der QuelleWan, Chunhua, Sylvia Mahara, Claire Sun, Anh Doan, Hui Kheng Chua, Dakang Xu, Jia Bian et al. „Genome-scale CRISPR-Cas9 screen of Wnt/β-catenin signaling identifies therapeutic targets for colorectal cancer“. Science Advances 7, Nr. 21 (Mai 2021): eabf2567. http://dx.doi.org/10.1126/sciadv.abf2567.
Der volle Inhalt der QuelleZhang, Kai, Mengchi Wang, Ying Zhao und Wei Wang. „Taiji: System-level identification of key transcription factors reveals transcriptional waves in mouse embryonic development“. Science Advances 5, Nr. 3 (März 2019): eaav3262. http://dx.doi.org/10.1126/sciadv.aav3262.
Der volle Inhalt der QuelleSun, Qian-Hui, Zi-Yu Kuang, Guang-Hui Zhu, Bao-Yi Ni und Jie Li. „Multifaceted role of microRNAs in gastric cancer stem cells: Mechanisms and potential biomarkers“. World Journal of Gastrointestinal Oncology 16, Nr. 2 (15.02.2024): 300–313. http://dx.doi.org/10.4251/wjgo.v16.i2.300.
Der volle Inhalt der QuelleLi, Cong-Jun, und Robert W. Li. „Bioinformatic Dissecting of TP53 Regulation Pathway Underlying Butyrate-induced Histone Modification in Epigenetic Regulation“. Genetics & Epigenetics 6 (Januar 2014): GEG.S14176. http://dx.doi.org/10.4137/geg.s14176.
Der volle Inhalt der QuelleAyyamperumal, Parichitran, Hemant Chandru Naik, Amlan Jyoti Naskar, Lakshmi Sowjanya Bammidi und Srimonta Gayen. „Epigenomic states contribute to coordinated allelic transcriptional bursting in iPSC reprogramming“. Life Science Alliance 7, Nr. 4 (06.02.2024): e202302337. http://dx.doi.org/10.26508/lsa.202302337.
Der volle Inhalt der QuelleNam, Chehyun. „Abstract 4461: Unveiling the links between methionine metabolism and epigenomic reprogramming in upper aerodigestive squamous cell carcinoma“. Cancer Research 84, Nr. 6_Supplement (22.03.2024): 4461. http://dx.doi.org/10.1158/1538-7445.am2024-4461.
Der volle Inhalt der QuelleMcKinsey, Timothy A., Thomas M. Vondriska und Yibin Wang. „Epigenomic regulation of heart failure: integrating histone marks, long noncoding RNAs, and chromatin architecture“. F1000Research 7 (29.10.2018): 1713. http://dx.doi.org/10.12688/f1000research.15797.1.
Der volle Inhalt der QuelleSiu, Celia, Sam Wiseman, Sitanshu Gakkhar, Alireza Heravi-Moussavi, Misha Bilenky, Annaick Carles, Thomas Sierocinski et al. „Characterization of the human thyroid epigenome“. Journal of Endocrinology 235, Nr. 2 (November 2017): 153–65. http://dx.doi.org/10.1530/joe-17-0145.
Der volle Inhalt der QuelleSobocińska, Joanna, Sara Molenda, Marta Machnik und Urszula Oleksiewicz. „KRAB-ZFP Transcriptional Regulators Acting as Oncogenes and Tumor Suppressors: An Overview“. International Journal of Molecular Sciences 22, Nr. 4 (23.02.2021): 2212. http://dx.doi.org/10.3390/ijms22042212.
Der volle Inhalt der QuelleYi, Mei, Yixin Tan, Li Wang, Jing Cai, Xiaoling Li, Zhaoyang Zeng, Wei Xiong et al. „TP63 links chromatin remodeling and enhancer reprogramming to epidermal differentiation and squamous cell carcinoma development“. Cellular and Molecular Life Sciences 77, Nr. 21 (23.05.2020): 4325–46. http://dx.doi.org/10.1007/s00018-020-03539-2.
Der volle Inhalt der QuelleEl Zarif, Talal, Karl Semaan, Marc Eid, Brad Fortunato, Amin H. Nassar, Sarah Abou Alaiwi, Ziad Bakouny et al. „Epigenomic profiling nominates master transcription factors (TFs) driving sarcomatoid differentiation (SD) of renal cell carcinoma (RCC)“. Oncologist 28, Supplement_1 (23.08.2023): S8. http://dx.doi.org/10.1093/oncolo/oyad216.012.
Der volle Inhalt der QuelleVolpato, Viola. „Integration of functional genomics data to uncover cell type-specific pathways affected in Parkinson's disease“. Biochemical Society Transactions 49, Nr. 5 (28.09.2021): 2091–100. http://dx.doi.org/10.1042/bst20210128.
Der volle Inhalt der QuelleDurek, Pawel, Karl Nordström, Gilles Gasparoni, Abdulrahman Salhab, Christopher Kressler, Melanie de Almeida, Kevin Bassler et al. „Epigenomic Profiling of Human CD4+ T Cells Supports a Linear Differentiation Model and Highlights Molecular Regulators of Memory Development“. Immunity 45, Nr. 5 (November 2016): 1148–61. http://dx.doi.org/10.1016/j.immuni.2016.10.022.
Der volle Inhalt der QuelleLoppin, Benjamin, und Frédéric Berger. „Histone Variants: The Nexus of Developmental Decisions and Epigenetic Memory“. Annual Review of Genetics 54, Nr. 1 (23.11.2020): 121–49. http://dx.doi.org/10.1146/annurev-genet-022620-100039.
Der volle Inhalt der QuelleHersh, Andrew M., Hallie Gaitsch, Safwan Alomari, Daniel Lubelski und Betty M. Tyler. „Molecular Pathways and Genomic Landscape of Glioblastoma Stem Cells: Opportunities for Targeted Therapy“. Cancers 14, Nr. 15 (31.07.2022): 3743. http://dx.doi.org/10.3390/cancers14153743.
Der volle Inhalt der QuelleGuo, Michael H., Satish K. Nandakumar, Jacob C. Ulirsch, Seyedeh M. Zekavat, Jason D. Buenrostro, Pradeep Natarajan, Rany M. Salem et al. „Comprehensive population-based genome sequencing provides insight into hematopoietic regulatory mechanisms“. Proceedings of the National Academy of Sciences 114, Nr. 3 (28.12.2016): E327—E336. http://dx.doi.org/10.1073/pnas.1619052114.
Der volle Inhalt der QuelleSemaan, Karl, Talal El Zarif, Marc Eid, Valisha Shah, Brad Fortunato, Renee Maria Saliby, Amin H. Nassar et al. „Abstract A029: Epigenomic profiling nominates master transcription factors (TFs) driving sarcomatoid differentiation of renal cell carcinoma (RCC)“. Cancer Research 83, Nr. 16_Supplement (15.08.2023): A029. http://dx.doi.org/10.1158/1538-7445.kidney23-a029.
Der volle Inhalt der QuelleEnfield, Katey S. S., Larissa A. Pikor, Victor D. Martinez und Wan L. Lam. „Mechanistic Roles of Noncoding RNAs in Lung Cancer Biology and Their Clinical Implications“. Genetics Research International 2012 (18.07.2012): 1–16. http://dx.doi.org/10.1155/2012/737416.
Der volle Inhalt der QuelleSato, Takashi, Junko Hamamoto, Katsura Emoto, Takahiro Fukushima, Kai Sugihara, Masayuki Shirasawa, Yoshiro Nakahara et al. „Abstract 5715: Epigenomic profiling identifies distinct neuroendocrine subtypes in lung cancer with neuroendocrine differentiation“. Cancer Research 82, Nr. 12_Supplement (15.06.2022): 5715. http://dx.doi.org/10.1158/1538-7445.am2022-5715.
Der volle Inhalt der QuelleSchmitz, Robert J., Alexandre P. Marand, Xuan Zhang, Rebecca A. Mosher, Franziska Turck, Xuemei Chen, Michael J. Axtell et al. „Quality control and evaluation of plant epigenomics data“. Plant Cell 34, Nr. 1 (14.10.2021): 503–13. http://dx.doi.org/10.1093/plcell/koab255.
Der volle Inhalt der QuelleRichard, Gautier, Julie Jaquiéry und Gaël Le Trionnaire. „Contribution of Epigenetic Mechanisms in the Regulation of Environmentally-Induced Polyphenism in Insects“. Insects 12, Nr. 7 (15.07.2021): 649. http://dx.doi.org/10.3390/insects12070649.
Der volle Inhalt der QuelleWulfridge, Phillip, Adam Davidovich, Anna C. Salvador, Gabrielle C. Manno, Rakel Tryggvadottir, Adrian Idrizi, M. Nazmul Huda et al. „Precision pharmacological reversal of strain-specific diet-induced metabolic syndrome in mice informed by epigenetic and transcriptional regulation“. PLOS Genetics 19, Nr. 10 (23.10.2023): e1010997. http://dx.doi.org/10.1371/journal.pgen.1010997.
Der volle Inhalt der QuelleYamagishi, Makoto. „The role of epigenetics in T-cell lymphoma“. International Journal of Hematology, 14.10.2022. http://dx.doi.org/10.1007/s12185-022-03470-1.
Der volle Inhalt der QuelleBell, Christopher G. „Epigenomic insights into common human disease pathology“. Cellular and Molecular Life Sciences 81, Nr. 1 (11.04.2024). http://dx.doi.org/10.1007/s00018-024-05206-2.
Der volle Inhalt der QuelleHenaff, Carole Le, Nicola Partridge, Frederic Jehan und Valerie Geoffroy. „Identification of epigenomic regulators of osteoblast function“. Bone Abstracts, 21.04.2016. http://dx.doi.org/10.1530/boneabs.5.p249.
Der volle Inhalt der QuelleLee, Ji-Eun, Hannah Schmidt, Binbin Lai und Kai Ge. „Transcriptional and Epigenomic Regulation of Adipogenesis“. Molecular and Cellular Biology 39, Nr. 11 (01.04.2019). http://dx.doi.org/10.1128/mcb.00601-18.
Der volle Inhalt der Quelle