Inhaltsverzeichnis
Auswahl der wissenschaftlichen Literatur zum Thema „Epigenome editors“
Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an
Machen Sie sich mit den Listen der aktuellen Artikel, Bücher, Dissertationen, Berichten und anderer wissenschaftlichen Quellen zum Thema "Epigenome editors" bekannt.
Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.
Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.
Zeitschriftenartikel zum Thema "Epigenome editors"
Syding, Linn Amanda, Petr Nickl, Petr Kasparek und Radislav Sedlacek. „CRISPR/Cas9 Epigenome Editing Potential for Rare Imprinting Diseases: A Review“. Cells 9, Nr. 4 (16.04.2020): 993. http://dx.doi.org/10.3390/cells9040993.
Der volle Inhalt der QuelleNakamura, Muneaki, Alexis E. Ivec, Yuchen Gao und Lei S. Qi. „Durable CRISPR-Based Epigenetic Silencing“. BioDesign Research 2021 (01.07.2021): 1–8. http://dx.doi.org/10.34133/2021/9815820.
Der volle Inhalt der QuelleFang, Yongxing, Wladislaw Stroukov, Toni Cathomen und Claudio Mussolino. „Chimerization Enables Gene Synthesis and Lentiviral Delivery of Customizable TALE-Based Effectors“. International Journal of Molecular Sciences 21, Nr. 3 (25.01.2020): 795. http://dx.doi.org/10.3390/ijms21030795.
Der volle Inhalt der QuelleRoman Azcona, Maria Silvia, Yongxing Fang, Antonio Carusillo, Toni Cathomen und Claudio Mussolino. „A versatile reporter system for multiplexed screening of effective epigenome editors“. Nature Protocols 15, Nr. 10 (04.09.2020): 3410–40. http://dx.doi.org/10.1038/s41596-020-0380-y.
Der volle Inhalt der QuelleWillyard, Cassandra. „The epigenome editors: How tools such as CRISPR offer new details about epigenetics“. Nature Medicine 23, Nr. 8 (August 2017): 900–903. http://dx.doi.org/10.1038/nm0817-900.
Der volle Inhalt der QuelleO’Geen, Henriette, Marketa Tomkova, Jacquelyn A. Combs, Emma K. Tilley und David J. Segal. „Determinants of heritable gene silencing for KRAB-dCas9 + DNMT3 and Ezh2-dCas9 + DNMT3 hit-and-run epigenome editing“. Nucleic Acids Research 50, Nr. 6 (02.03.2022): 3239–53. http://dx.doi.org/10.1093/nar/gkac123.
Der volle Inhalt der QuellePsatha, Nikoletta, Kiriaki Paschoudi, Anastasia Papadopoulou und Evangelia Yannaki. „In Vivo Hematopoietic Stem Cell Genome Editing: Perspectives and Limitations“. Genes 13, Nr. 12 (27.11.2022): 2222. http://dx.doi.org/10.3390/genes13122222.
Der volle Inhalt der QuelleDehshahri, Ali, Alessio Biagioni, Hadi Bayat, E. Hui Clarissa Lee, Mohammad Hashemabadi, Hojjat Samareh Fekri, Ali Zarrabi, Reza Mohammadinejad und Alan Prem Kumar. „Editing SOX Genes by CRISPR-Cas: Current Insights and Future Perspectives“. International Journal of Molecular Sciences 22, Nr. 21 (20.10.2021): 11321. http://dx.doi.org/10.3390/ijms222111321.
Der volle Inhalt der QuelleSzyf, Moshe. „The Epigenome: Molecular Hide and Seek. Stephan Beck and Alexander Olek, editors. Weinheim, Germany: Wiley-VCH GmbH Co. KGaA, 2003, 188 pp., $35.00, softcover. ISBN 3-527-30494-0.“ Clinical Chemistry 49, Nr. 9 (01.09.2003): 1566–67. http://dx.doi.org/10.1373/49.9.1566.
Der volle Inhalt der QuelleBrane, Andrew, Madeline Sutko und Trygve O. Tollefsbol. „p21 Promoter Methylation Is Vital for the Anticancer Activity of Withaferin A“. International Journal of Molecular Sciences 26, Nr. 3 (30.01.2025): 1210. https://doi.org/10.3390/ijms26031210.
Der volle Inhalt der QuelleDissertationen zum Thema "Epigenome editors"
Fontana, Letizia. „Genome and epigenome editing approaches to treat β-hemoglobinopathies“. Electronic Thesis or Diss., Université Paris Cité, 2024. http://www.theses.fr/2024UNIP5230.
Der volle Inhalt der QuelleB-thalassemia and sickle cell disease (SCD) result from mutations that affect the synthesis or structure of adult hemoglobin. Historically, allogeneic hematopoietic stem cell (HSC) transplantation from a compatible donor was the only curative treatment. Transplantation of autologous, genetically modified HSCs offers a promising therapeutic alternative for patients lacking a suitable donor. The clinical severity in b-hemoglobinopathies is mitigated by co-inheritance of hereditary persistence of fetal hemoglobin (HPFH), a benign condition characterized by mutations occurring in the genes encoding the fetal y-globin chains, which lead to increased fetal hemoglobin (HbF, a2y2) expression, which can rescue the b-thalassemic and SCD phenotypes. HbF reactivation can be achieved by down-regulating BCL11A, encoding a key repressor of HbF. A CRISPR/Cas9 strategy targeting the GATA1 binding site (BS) within the +58-kb erythroid-specific enhancer of BCL11A has recently been approved as the first gene-editing therapy for b-thalassemia and SCD. Indeed, the targeting of the BCL11A erythroid-specific enhancer led to an efficient reduction of BCL11A in the erythroid cells, without impacting the differentiation of HSPCs in the other cell lineages. However, site-specific nucleases induce double strand breaks (DSBs), posing significant risks, such apoptosis and generation of large genomic rearrangements. In addition, to obtain an adequate number of corrected cells to transplant, several collections of HSCs are necessary to compensate for the cell loss due to DSB-induced apoptosis. Finally, the clinical study showed variability in the extent of HbF reactivation, still high HbS levels and modest correction of ineffective erythropoiesis. Novel CRISPR/Cas9 derived tools are currently available and can be used to develop therapeutic strategies associated with a low risk of DSB generation and increased HbF expression. In this project, we intend to develop universal, safe and efficacious therapeutic strategies for b-hemoglobinopathies aimed at modifying HSCs using base editors (BEs) and epigenome editors to reactivate HbF expression in their erythroid progeny. BEs are a CRISPR-Cas9-based genome editing technology that allows the introduction of point mutations with little DSB generation. In this work we used this technology to inactivate the GATA1 or the ATF4 transcriptional activator BS in the +58-kb and +55-kb BCL11A erythroid-specific enhancers through the insertion of point mutations. In particular, to reach levels of HbF sufficient to rescue the sickling phenotype, we performed simultaneous targeting of the two BS, achieving similar HbF levels compared to CRISPR/Cas9 nuclease-based approach. Additionally, we showed that BEs generated fewer DSBs and genomic rearrangements compared to the CRISPR/Cas9 nuclease approach. In parallel, we developed a novel epigenome-editing strategy aimed at modulating gene expression without altering the DNA sequence (e.g. without generating DSBs). We designed two approaches to upregulate HbF expression: a first strategy targeting and activating the y-globin promoters and a second approach downregulating BCL11A by targeting its erythroid-specific enhancers. We first identified the epigenetic marks in these trans- and cis-regulatory regions that are associated with active or inactive transcription in adult versus fetal erythroid cells. Then we used epigenome editors to deposit active histone modifications at the y-globin promoters and remove inactive marks such as DNA methylation. In parallel, we decorated the BCL11A enhancers with inactive epigenetic marks. Preliminary results demonstrated y-globin reactivation using both strategies, though the effects diminished over time, indicating the need for further optimization. In conclusion, we proposed two different editing approaches that allow to reduce DSB-associate issues as strategies to treat b-hemoglobinopathies
Buchteile zum Thema "Epigenome editors"
Sen, Dilara, und Albert J. Keung. „Designing Epigenome Editors: Considerations of Biochemical and Locus Specificities“. In Methods in Molecular Biology, 65–87. New York, NY: Springer New York, 2018. http://dx.doi.org/10.1007/978-1-4939-7774-1_3.
Der volle Inhalt der QuelleYagci, Z. Begum, Gautami R. Kelkar, Tyler J. Johnson, Dilara Sen und Albert J. Keung. „Designing Epigenome Editors: Considerations of Biochemical and Locus Specificities“. In Methods in Molecular Biology, 23–55. New York, NY: Springer US, 2024. http://dx.doi.org/10.1007/978-1-0716-4051-7_2.
Der volle Inhalt der QuelleNoviello, Gemma, und Rutger A. F. Gjaltema. „Fine-Tuning the Epigenetic Landscape: Chemical Modulation of Epigenome Editors“. In Methods in Molecular Biology, 57–77. New York, NY: Springer US, 2024. http://dx.doi.org/10.1007/978-1-0716-4051-7_3.
Der volle Inhalt der QuelleKroll, Carolin, und Philipp Rathert. „Stable Expression of Epigenome Editors via Viral Delivery and Genomic Integration“. In Methods in Molecular Biology, 215–25. New York, NY: Springer New York, 2018. http://dx.doi.org/10.1007/978-1-4939-7774-1_11.
Der volle Inhalt der Quelle