Zeitschriftenartikel zum Thema „Epigenetic reprograming“
Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an
Machen Sie sich mit Top-50 Zeitschriftenartikel für die Forschung zum Thema "Epigenetic reprograming" bekannt.
Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.
Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.
Sehen Sie die Zeitschriftenartikel für verschiedene Spezialgebieten durch und erstellen Sie Ihre Bibliographie auf korrekte Weise.
Lameirinhas, Ana, Vera Miranda-Gonçalves, Rui Henrique und Carmen Jerónimo. „The Complex Interplay between Metabolic Reprogramming and Epigenetic Alterations in Renal Cell Carcinoma“. Genes 10, Nr. 4 (02.04.2019): 264. http://dx.doi.org/10.3390/genes10040264.
Der volle Inhalt der QuelleAguirre-Vázquez, Alain, Luis A. Salazar-Olivo, Xóchitl Flores-Ponce, Ana L. Arriaga-Guerrero, Dariela Garza-Rodríguez, María E. Camacho-Moll, Iván Velasco, Fabiola Castorena-Torres, Nidheesh Dadheech und Mario Bermúdez de León. „5-Aza-2′-Deoxycytidine and Valproic Acid in Combination with CHIR99021 and A83-01 Induce Pluripotency Genes Expression in Human Adult Somatic Cells“. Molecules 26, Nr. 7 (29.03.2021): 1909. http://dx.doi.org/10.3390/molecules26071909.
Der volle Inhalt der QuelleHabel, Nadia, Najla El-Hachem, Frédéric Soysouvanh, Hanene Hadhiri-Bzioueche, Serena Giuliano, Sophie Nguyen, Pavel Horák et al. „FBXO32 links ubiquitination to epigenetic reprograming of melanoma cells“. Cell Death & Differentiation 28, Nr. 6 (18.01.2021): 1837–48. http://dx.doi.org/10.1038/s41418-020-00710-x.
Der volle Inhalt der QuelleBui, L. C., A. V. Evsikov, D. R. Khan, C. Archilla, N. Peynot, A. Hénaut, D. Le Bourhis, X. Vignon, J. P. Renard und V. Duranthon. „Retrotransposon expression as a defining event of genome reprograming in fertilized and cloned bovine embryos“. REPRODUCTION 138, Nr. 2 (August 2009): 289–99. http://dx.doi.org/10.1530/rep-09-0042.
Der volle Inhalt der QuellePilsner, J. Richard, Mikhail Parker, Oleg Sergeyev und Alexander Suvorov. „Spermatogenesis disruption by dioxins: Epigenetic reprograming and windows of susceptibility“. Reproductive Toxicology 69 (April 2017): 221–29. http://dx.doi.org/10.1016/j.reprotox.2017.03.002.
Der volle Inhalt der QuelleMerino, Aimee, Bin Zhang, Philip Dougherty, Xianghua Luo, Jinhua Wang, Bruce R. Blazar, Jeffrey S. Miller und Frank Cichocki. „Chronic stimulation drives human NK cell dysfunction and epigenetic reprograming“. Journal of Clinical Investigation 129, Nr. 9 (12.08.2019): 3770–85. http://dx.doi.org/10.1172/jci125916.
Der volle Inhalt der QuelleZhang, Zhiren, Yanhui Zhai, Xiaoling Ma, Sheng Zhang, Xinglan An, Hao Yu und Ziyi Li. „Down-Regulation of H3K4me3 by MM-102 Facilitates Epigenetic Reprogramming of Porcine Somatic Cell Nuclear Transfer Embryos“. Cellular Physiology and Biochemistry 45, Nr. 4 (2018): 1529–40. http://dx.doi.org/10.1159/000487579.
Der volle Inhalt der QuelleAmsalem, Zohar, Tasleem Arif, Anna Shteinfer-Kuzmine, Vered Chalifa-Caspi und Varda Shoshan-Barmatz. „The Mitochondrial Protein VDAC1 at the Crossroads of Cancer Cell Metabolism: The Epigenetic Link“. Cancers 12, Nr. 4 (22.04.2020): 1031. http://dx.doi.org/10.3390/cancers12041031.
Der volle Inhalt der QuelleMani, Sneha, und Monica Mainigi. „Embryo Culture Conditions and the Epigenome“. Seminars in Reproductive Medicine 36, Nr. 03/04 (Mai 2018): 211–20. http://dx.doi.org/10.1055/s-0038-1675777.
Der volle Inhalt der QuelleByrne, Kristen A., Hamid Beiki, Christopher K. Tuggle und Crystal L. Loving. „β-glucan induced training and tolerance: alterations to primary monocytes“. Journal of Immunology 200, Nr. 1_Supplement (01.05.2018): 59.17. http://dx.doi.org/10.4049/jimmunol.200.supp.59.17.
Der volle Inhalt der QuelleNorman, Allison R., Grace Anne Ward, Caitlin C. Zebley und Ben A. Youngblood. „Effects of targeted epigenetic modifications on T – cell reprogramming“. Journal of Immunology 210, Nr. 1_Supplement (01.05.2023): 148.09. http://dx.doi.org/10.4049/jimmunol.210.supp.148.09.
Der volle Inhalt der QuelleAnderson, Juan, Mariah Delgado, Malcolm Lovett, Maya Saunders, Geovannie Lake, Samuel Darko, Rose M. Stiffin et al. „Abstract 859: Development of non-smoking lung cancers by indoor carcinogenic aerosols through epigenetic reprogramming of lung stem cells: Bioinformatics and artificial intelligence analysis“. Cancer Research 84, Nr. 6_Supplement (22.03.2024): 859. http://dx.doi.org/10.1158/1538-7445.am2024-859.
Der volle Inhalt der QuelleLi, Mingli, und Chun-Wei Chen. „Epigenetic and Transcriptional Signaling in Ewing Sarcoma—Disease Etiology and Therapeutic Opportunities“. Biomedicines 10, Nr. 6 (05.06.2022): 1325. http://dx.doi.org/10.3390/biomedicines10061325.
Der volle Inhalt der QuelleKelly, Rebeca, Diego Aviles, Catriona Krisulevicz, Krystal Hunter, Lauren Krill, David Warshal und Olga Ostrovsky. „The Effects of Natural Epigenetic Therapies in 3D Ovarian Cancer and Patient-Derived Tumor Explants: New Avenues in Regulating the Cancer Secretome“. Biomolecules 13, Nr. 7 (01.07.2023): 1066. http://dx.doi.org/10.3390/biom13071066.
Der volle Inhalt der QuelleGehrmann, Ulf, Marianne Burbage, Elina Zueva, Christel Goudot, Cyril Esnault, Mengliang Ye, Jean-Marie Carpier et al. „Critical role for TRIM28 and HP1β/γ in the epigenetic control of T cell metabolic reprograming and effector differentiation“. Proceedings of the National Academy of Sciences 116, Nr. 51 (27.11.2019): 25839–49. http://dx.doi.org/10.1073/pnas.1901639116.
Der volle Inhalt der QuelleFedoroff, Nina, Jo Ann Banks und Patrick Masson. „Molecular genetic analysis of the maize Suppressor-mutator element's epigenetic developmental regulatory mechanism“. Genome 31, Nr. 2 (15.01.1989): 973–79. http://dx.doi.org/10.1139/g89-170.
Der volle Inhalt der QuelleArif, Stern, Pittala, Chalifa-Caspi und Shoshan-Barmatz. „Rewiring of Cancer Cell Metabolism by Mitochondrial VDAC1 Depletion Results in Time-Dependent Tumor Reprogramming: Glioblastoma as a Proof of Concept“. Cells 8, Nr. 11 (28.10.2019): 1330. http://dx.doi.org/10.3390/cells8111330.
Der volle Inhalt der QuelleAhmad, Aamir. „Corruptive Reprograming of Macrophages into Tumor-Associated Macrophages: The Transcriptional, Epigenetic and Metabolic Basis“. Cancers 15, Nr. 17 (28.08.2023): 4291. http://dx.doi.org/10.3390/cancers15174291.
Der volle Inhalt der QuelleMunger, Karl, und D. Leanne Jones. „Human Papillomavirus Carcinogenesis: an Identity Crisis in the Retinoblastoma Tumor Suppressor Pathway“. Journal of Virology 89, Nr. 9 (11.02.2015): 4708–11. http://dx.doi.org/10.1128/jvi.03486-14.
Der volle Inhalt der QuelleÖzbek, Rabia, Krishnendu Mukherjee, Fevzi Uçkan und Andreas Vilcinskas. „Reprograming of epigenetic mechanisms controlling host insect immunity and development in response to egg-laying by a parasitoid wasp“. Proceedings of the Royal Society B: Biological Sciences 287, Nr. 1928 (10.06.2020): 20200704. http://dx.doi.org/10.1098/rspb.2020.0704.
Der volle Inhalt der QuelleCorrêa, Régis L., Alejandro Sanz-Carbonell, Zala Kogej, Sebastian Y. Müller, Silvia Ambrós, Sara López-Gomollón, Gustavo Gómez, David C. Baulcombe und Santiago F. Elena. „Viral Fitness Determines the Magnitude of Transcriptomic and Epigenomic Reprograming of Defense Responses in Plants“. Molecular Biology and Evolution 37, Nr. 7 (07.04.2020): 1866–81. http://dx.doi.org/10.1093/molbev/msaa091.
Der volle Inhalt der QuelleDay, Charles, Alyssa Langfald, Florina Grigore, Sela Fadness, Leslie Sepaniac, Jason Stumpff, Kevin Vaughan, James Robinson und Edward Hinchcliffe. „DIPG-05. HISTONE H3.3 K27M IMPAIRS SER31 PHOSPHORYLATION, RESULTING IN CHROMOSOMAL INSTABILITY, LOSS OF CELL CYCLE CHECKPOINT CONTROL, AND TUMOR FORMATION“. Neuro-Oncology 22, Supplement_3 (01.12.2020): iii288. http://dx.doi.org/10.1093/neuonc/noaa222.057.
Der volle Inhalt der QuelleKutschat, Ana P., Steven A. Johnsen und Feda H. Hamdan. „Store-Operated Calcium Entry: Shaping the Transcriptional and Epigenetic Landscape in Pancreatic Cancer“. Cells 10, Nr. 5 (21.04.2021): 966. http://dx.doi.org/10.3390/cells10050966.
Der volle Inhalt der QuelleSato, Hiromichi, Tomoaki Hara, Sikun Meng, Yoshiko Tsuji, Yasuko Arao, Kazuki Sasaki, Norikatsu Miyoshi et al. „Drug Discovery and Development of miRNA-Based Nucleotide Drugs for Gastrointestinal Cancer“. Biomedicines 11, Nr. 8 (09.08.2023): 2235. http://dx.doi.org/10.3390/biomedicines11082235.
Der volle Inhalt der QuelleTanaka, Atsushi. „How to Improve Clinical Outcome in ROSI“. Fertility & Reproduction 05, Nr. 04 (Dezember 2023): 275. http://dx.doi.org/10.1142/s2661318223740894.
Der volle Inhalt der QuelleGoto, Norihiro, Saori Goto, Peter Westcott, Shinya Imada, Judith Agudo und Omer Yilmaz. „Abstract 1352: SOX17 plays a critical role in immune evasion of colorectal cancer“. Cancer Research 83, Nr. 7_Supplement (04.04.2023): 1352. http://dx.doi.org/10.1158/1538-7445.am2023-1352.
Der volle Inhalt der QuelleRenatino-Canevarolo, Rafael, Mark B. Meads, Maria Silva, Praneeth Reddy Sudalagunta, Christopher Cubitt, Gabriel De Avila, Raghunandan R. Alugubelli et al. „Dynamic Epigenetic Landscapes Define Multiple Myeloma Progression and Drug Resistance“. Blood 136, Supplement 1 (05.11.2020): 32–33. http://dx.doi.org/10.1182/blood-2020-142872.
Der volle Inhalt der QuelleVelasquez-Vasconez, Pedro A., Benjamin J. Hunt, Renata O. Dias, Thaís P. Souza, Chris Bass und Marcio C. Silva-Filho. „Adaptation of Helicoverpa armigera to Soybean Peptidase Inhibitors Is Associated with the Transgenerational Upregulation of Serine Peptidases“. International Journal of Molecular Sciences 23, Nr. 22 (18.11.2022): 14301. http://dx.doi.org/10.3390/ijms232214301.
Der volle Inhalt der QuelleWang, Zhishan, und Chengfeng Yang. „Metal carcinogen exposure induces cancer stem cell-like property through epigenetic reprograming: A novel mechanism of metal carcinogenesis“. Seminars in Cancer Biology 57 (August 2019): 95–104. http://dx.doi.org/10.1016/j.semcancer.2019.01.002.
Der volle Inhalt der QuelleMa, Xuan, Feng Xing, Qingxiao Jia, Qinglu Zhang, Tong Hu, Baoguo Wu, Lin Shao, Yu Zhao, Qifa Zhang und Dao-Xiu Zhou. „Parental variation in CHG methylation is associated with allelic-specific expression in elite hybrid rice“. Plant Physiology 186, Nr. 2 (23.02.2021): 1025–41. http://dx.doi.org/10.1093/plphys/kiab088.
Der volle Inhalt der QuelleKoul, Hari K., Mousa Vatanmakanian, Ellen Nogueira Lima, Lakshmi S. Chaturvedi und Sweaty K. Koul. „DNA methyl-transferases (DNMTs) as potential therapeutic vulnerability in prostate cancer.“ Journal of Clinical Oncology 42, Nr. 4_suppl (01.02.2024): 339. http://dx.doi.org/10.1200/jco.2024.42.4_suppl.339.
Der volle Inhalt der QuelleBitman-Lotan, Eliya, und Amir Orian. „Nuclear organization and regulation of the differentiated state“. Cellular and Molecular Life Sciences 78, Nr. 7 (28.01.2021): 3141–58. http://dx.doi.org/10.1007/s00018-020-03731-4.
Der volle Inhalt der QuelleJaune-Pons, Emilie, Zachary Klassen, Rachel Lu, Ye Shen, Nadeem Hussain, Michael Sey, Ken Leslie et al. „Abstract B067: Patient-specific differences in cancer-associated fibroblasts alter tumor organoid phenotype and chemosensitivity in pancreatic ductal adenocarcinoma“. Cancer Research 84, Nr. 2_Supplement (16.01.2024): B067. http://dx.doi.org/10.1158/1538-7445.panca2023-b067.
Der volle Inhalt der QuelleKelly, Rebeca, Diego Aviles, David Philip Warshal, Lauren Krill und Olga Ostrovsky. „Can epigenetic treatments efficiently revoke the ability of 3D ovarian cancer cells to proliferate, migrate, and invade?“ Journal of Clinical Oncology 41, Nr. 16_suppl (01.06.2023): e17562-e17562. http://dx.doi.org/10.1200/jco.2023.41.16_suppl.e17562.
Der volle Inhalt der QuelleFunk, Christopher Ronald, Shuhua Wang, Kevin Z. Chen, Alexandra Waller, Aditi Sharma, Claudia L. Edgar, Vikas A. Gupta et al. „PI3Kδ/γ inhibition promotes human CART cell epigenetic and metabolic reprogramming to enhance antitumor cytotoxicity“. Blood 139, Nr. 4 (27.01.2022): 523–37. http://dx.doi.org/10.1182/blood.2021011597.
Der volle Inhalt der QuelleHuang, Xin, Xudong Gao, Wanying Li, Shuai Jiang, Ruijiang Li, Hao Hong, Chenghui Zhao et al. „Stable H3K4me3 is associated with transcription initiation during early embryo development“. Bioinformatics 35, Nr. 20 (12.03.2019): 3931–36. http://dx.doi.org/10.1093/bioinformatics/btz173.
Der volle Inhalt der QuelleSobolewski, Marissa, Garima Varma, Beth Adams, David W. Anderson, Jay S. Schneider und Deborah A. Cory-Slechta. „Developmental Lead Exposure and Prenatal Stress Result in Sex-Specific Reprograming of Adult Stress Physiology and Epigenetic Profiles in Brain“. Toxicological Sciences 163, Nr. 2 (21.02.2018): 478–89. http://dx.doi.org/10.1093/toxsci/kfy046.
Der volle Inhalt der QuelleChen, Longmin, Jing Zhang, Yuan Zou, Faxi Wang, Jingyi Li, Fei Sun, Xi Luo et al. „Kdm2a deficiency in macrophages enhances thermogenesis to protect mice against HFD-induced obesity by enhancing H3K36me2 at the Pparg locus“. Cell Death & Differentiation 28, Nr. 6 (18.01.2021): 1880–99. http://dx.doi.org/10.1038/s41418-020-00714-7.
Der volle Inhalt der QuelleEid, Wassim, und Wafaa Abdel-Rehim. „Vitamin C promotes pluripotency of human induced pluripotent stem cells via the histone demethylase JARID1A“. Biological Chemistry 397, Nr. 11 (01.11.2016): 1205–13. http://dx.doi.org/10.1515/hsz-2016-0181.
Der volle Inhalt der QuelleStojanovic, Lora, Rachel Abbotts, Kaushlendra Tripathi, Collin M. Coon, Sheng Liu, Jun Wan, Michael J. Topper, Kenneth P. Nephew, Stephen B. Baylin und Feyruz V. Rassool. „Abstract PR-005: ZNFX1 is a master regulator for epigenetic reprograming of mitochondrial inflammasome signaling and pathogen mimicry in cancer cells“. Cancer Research 84, Nr. 5_Supplement_2 (04.03.2024): PR—005—PR—005. http://dx.doi.org/10.1158/1538-7445.ovarian23-pr-005.
Der volle Inhalt der Quellede Lima Camillo, Lucas Paulo, und Robert B. A. Quinlan. „A ride through the epigenetic landscape: aging reversal by reprogramming“. GeroScience 43, Nr. 2 (April 2021): 463–85. http://dx.doi.org/10.1007/s11357-021-00358-6.
Der volle Inhalt der QuelleBae, Jooeun, Shuichi Kitayama, Zach Herbert, Laurence Daheron, Nikhil C. Munshi, Shin Kaneko, Jerome Ritz und Kenneth Carl Anderson. „Development of B-cell maturation antigen (BCMA)-specific CD8+ cytotoxic T lymphocytes using induced pluripotent stem cell technology for multiple myeloma.“ Journal of Clinical Oncology 40, Nr. 16_suppl (01.06.2022): 2542. http://dx.doi.org/10.1200/jco.2022.40.16_suppl.2542.
Der volle Inhalt der QuelleBae, Jooeun, Shuichi Kitayama, Zach Herbert, Laurence Daheron, Nikhil C. Munshi, Shin Kaneko, Jerome Ritz und Kenneth Carl Anderson. „Development of B-cell maturation antigen (BCMA)-specific CD8+ cytotoxic T lymphocytes using induced pluripotent stem cell technology for multiple myeloma.“ Journal of Clinical Oncology 40, Nr. 16_suppl (01.06.2022): 2542. http://dx.doi.org/10.1200/jco.2022.40.16_suppl.2542.
Der volle Inhalt der QuelleAlimova, Irina, Etienne Danis, Marla Weetall, Angela M. Pierce, Dong Wang, Natalie Serkova, Ilango Balakrishnan et al. „ATRT-06. SMARCB1 LOSS DRIVEN NON-CANONICAL PRC1 ACTIVITY REGULATES DIFFERENTIATION IN ATYPICAL TERATOID RHABDOID TUMORS (ATRT)“. Neuro-Oncology 22, Supplement_3 (01.12.2020): iii276—iii277. http://dx.doi.org/10.1093/neuonc/noaa222.006.
Der volle Inhalt der QuelleTibana, Ramires, Octávio Franco, Rinaldo Pereira, James Navalta und Jonato Prestes. „Exercise as an Effective Transgenerational Strategy to Overcome Metabolic Syndrome in the Future Generation: Are We There?“ Experimental and Clinical Endocrinology & Diabetes 125, Nr. 06 (11.05.2017): 347–52. http://dx.doi.org/10.1055/s-0042-120538.
Der volle Inhalt der QuelleMasuda, Muneyuki, Hirofumi Omori, Kuniaki Sato, Josef Penninger und Silvio Gutkind. „Abstract PO-063: Environment-induced YAP1 transcriptional reprogramming drives head and neck cancer“. Clinical Cancer Research 29, Nr. 18_Supplement (15.09.2023): PO—063—PO—063. http://dx.doi.org/10.1158/1557-3265.aacrahns23-po-063.
Der volle Inhalt der QuellePereira, Marcelo de Souza Fernandes, Yasemin Sezgin, Aarohi Thakkar und Dean Anthony Lee. „Tgfβ-Imprinting Decrease CD38 Expression and Lead to Metabolic Reprogramming on Primary NK Cell“. Blood 136, Supplement 1 (05.11.2020): 4. http://dx.doi.org/10.1182/blood-2020-143085.
Der volle Inhalt der QuelleChiang, Chi-Ling, Frank W. Frissora, Zhiliang Xie, Xiaomeng Huang, Rajeswaran Mani, Sivasubramanian Baskar, Christoph Rader et al. „Immunoliposomal Delivery of Mir-29b By Targeting Tumor Antigen ROR1 Induces Epigenetic Reprograming in Human-ROR1-Expressed Mouse Model of Chronic Lymphocytic Leukemia“. Blood 126, Nr. 23 (03.12.2015): 1743. http://dx.doi.org/10.1182/blood.v126.23.1743.1743.
Der volle Inhalt der QuelleBaranovski, Boris M., Gabriella S. Freixo-Lima, Eli C. Lewis und Peleg Rider. „T Helper Subsets, Peripheral Plasticity, and the Acute Phase Protein,α1-Antitrypsin“. BioMed Research International 2015 (2015): 1–14. http://dx.doi.org/10.1155/2015/184574.
Der volle Inhalt der QuelleByrne, Kristen A., Julian M. Trachsel, Zahra F. Bond, Jamison R. Slate, Brian J. Kerr, Bradley L. Bearson, Shawn M. Bearson und Crystal L. Loving. „Dietary β-glucan reduced Salmonella shedding, shifted intestinal microbiome, and altered intestinal integrity“. Journal of Immunology 204, Nr. 1_Supplement (01.05.2020): 92.15. http://dx.doi.org/10.4049/jimmunol.204.supp.92.15.
Der volle Inhalt der Quelle