Inhaltsverzeichnis
Auswahl der wissenschaftlichen Literatur zum Thema „Epigenetic reprograming“
Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an
Machen Sie sich mit den Listen der aktuellen Artikel, Bücher, Dissertationen, Berichten und anderer wissenschaftlichen Quellen zum Thema "Epigenetic reprograming" bekannt.
Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.
Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.
Zeitschriftenartikel zum Thema "Epigenetic reprograming"
Lameirinhas, Ana, Vera Miranda-Gonçalves, Rui Henrique und Carmen Jerónimo. „The Complex Interplay between Metabolic Reprogramming and Epigenetic Alterations in Renal Cell Carcinoma“. Genes 10, Nr. 4 (02.04.2019): 264. http://dx.doi.org/10.3390/genes10040264.
Der volle Inhalt der QuelleAguirre-Vázquez, Alain, Luis A. Salazar-Olivo, Xóchitl Flores-Ponce, Ana L. Arriaga-Guerrero, Dariela Garza-Rodríguez, María E. Camacho-Moll, Iván Velasco, Fabiola Castorena-Torres, Nidheesh Dadheech und Mario Bermúdez de León. „5-Aza-2′-Deoxycytidine and Valproic Acid in Combination with CHIR99021 and A83-01 Induce Pluripotency Genes Expression in Human Adult Somatic Cells“. Molecules 26, Nr. 7 (29.03.2021): 1909. http://dx.doi.org/10.3390/molecules26071909.
Der volle Inhalt der QuelleHabel, Nadia, Najla El-Hachem, Frédéric Soysouvanh, Hanene Hadhiri-Bzioueche, Serena Giuliano, Sophie Nguyen, Pavel Horák et al. „FBXO32 links ubiquitination to epigenetic reprograming of melanoma cells“. Cell Death & Differentiation 28, Nr. 6 (18.01.2021): 1837–48. http://dx.doi.org/10.1038/s41418-020-00710-x.
Der volle Inhalt der QuelleBui, L. C., A. V. Evsikov, D. R. Khan, C. Archilla, N. Peynot, A. Hénaut, D. Le Bourhis, X. Vignon, J. P. Renard und V. Duranthon. „Retrotransposon expression as a defining event of genome reprograming in fertilized and cloned bovine embryos“. REPRODUCTION 138, Nr. 2 (August 2009): 289–99. http://dx.doi.org/10.1530/rep-09-0042.
Der volle Inhalt der QuellePilsner, J. Richard, Mikhail Parker, Oleg Sergeyev und Alexander Suvorov. „Spermatogenesis disruption by dioxins: Epigenetic reprograming and windows of susceptibility“. Reproductive Toxicology 69 (April 2017): 221–29. http://dx.doi.org/10.1016/j.reprotox.2017.03.002.
Der volle Inhalt der QuelleMerino, Aimee, Bin Zhang, Philip Dougherty, Xianghua Luo, Jinhua Wang, Bruce R. Blazar, Jeffrey S. Miller und Frank Cichocki. „Chronic stimulation drives human NK cell dysfunction and epigenetic reprograming“. Journal of Clinical Investigation 129, Nr. 9 (12.08.2019): 3770–85. http://dx.doi.org/10.1172/jci125916.
Der volle Inhalt der QuelleZhang, Zhiren, Yanhui Zhai, Xiaoling Ma, Sheng Zhang, Xinglan An, Hao Yu und Ziyi Li. „Down-Regulation of H3K4me3 by MM-102 Facilitates Epigenetic Reprogramming of Porcine Somatic Cell Nuclear Transfer Embryos“. Cellular Physiology and Biochemistry 45, Nr. 4 (2018): 1529–40. http://dx.doi.org/10.1159/000487579.
Der volle Inhalt der QuelleAmsalem, Zohar, Tasleem Arif, Anna Shteinfer-Kuzmine, Vered Chalifa-Caspi und Varda Shoshan-Barmatz. „The Mitochondrial Protein VDAC1 at the Crossroads of Cancer Cell Metabolism: The Epigenetic Link“. Cancers 12, Nr. 4 (22.04.2020): 1031. http://dx.doi.org/10.3390/cancers12041031.
Der volle Inhalt der QuelleMani, Sneha, und Monica Mainigi. „Embryo Culture Conditions and the Epigenome“. Seminars in Reproductive Medicine 36, Nr. 03/04 (Mai 2018): 211–20. http://dx.doi.org/10.1055/s-0038-1675777.
Der volle Inhalt der QuelleByrne, Kristen A., Hamid Beiki, Christopher K. Tuggle und Crystal L. Loving. „β-glucan induced training and tolerance: alterations to primary monocytes“. Journal of Immunology 200, Nr. 1_Supplement (01.05.2018): 59.17. http://dx.doi.org/10.4049/jimmunol.200.supp.59.17.
Der volle Inhalt der QuelleDissertationen zum Thema "Epigenetic reprograming"
Bagci, Hakan. „Epigenetic reprogramming and DNA demethylation“. Thesis, Imperial College London, 2014. http://hdl.handle.net/10044/1/45352.
Der volle Inhalt der QuelleHajkova, Petra. „Epigenetic reprogramming in mouse germ cells“. [S.l. : s.n.], 2002. http://deposit.ddb.de/cgi-bin/dokserv?idn=970526938.
Der volle Inhalt der QuelleRao, Venkata Lakshmi Prakruthi. „Epigenetic Reprogramming at the Th2 Locus“. University of Cincinnati / OhioLINK, 2018. http://rave.ohiolink.edu/etdc/view?acc_num=ucin1543838686940608.
Der volle Inhalt der QuelleRibeiro, Lemos Pereira Carlos Filipe. „Epigenetic events underlying somatic cell reprogramming“. Thesis, Imperial College London, 2008. http://hdl.handle.net/10044/1/4439.
Der volle Inhalt der QuelleHajkova, Petra. „Epigenetic reprogramming in mouse germ cells“. Doctoral thesis, Humboldt-Universität zu Berlin, Mathematisch-Naturwissenschaftliche Fakultät I, 2004. http://dx.doi.org/10.18452/15020.
Der volle Inhalt der QuelleEpigenetic reprogramming in mammalian germ cells, zygote and early embryos, plays a crucial role in regulating genome functions at critical stages of development. Germ line epigenetic reprogramming assures erasure of all the imprinting marks and epi-mutations and establishment of new sex-specific gametic imprints. The presented work focuses on the erasure of epigenetic modifications that occur in mouse primordial germ cells (PGCs) between day 10.5 to 13.5 post coitum (dpc). Contrary to previous assumptions, our results show that as they enter the genital ridge the PGCs still possess DNA methylation marks comparable to those found in somatic cells. Shortly after the entry of PGCs into the gonadal anlagen the DNA methylation marks associated with imprinted and non-imprinted genes are erased. For most genes the erasure commences simultaneously in PGCs of both male and female embryos and is completed within only one day of development. The kinetics of this process indicates that is an active demethylation process initiated by a somatic signal emanating from the stroma of the genital ridge. The timing of reprogramming in PGCs is crucial since it ensures that germ cells of both sexes acquire an equivalent epigenetic state prior to the differentiation of the definitive male and female germ cells in which, new parental imprints are established subsequently. Complete understanding of the germline reprogramming processes is important not only in the light of genomic imprinting but also for resolving other mechanisms connected with restoring cellular totipotency, such as cloning and stem cell derivation.
Dura, Mathilde. „Critical and different roles of DNA methylation in male germ cell development“. Electronic Thesis or Diss., Sorbonne université, 2021. http://www.theses.fr/2021SORUS187.
Der volle Inhalt der QuelleDNA methylation, associated with gene or transposable element (TE) repression, plays a key role in spermatogenesis. During germ cell development, their methylome is reprogrammed: somatic patterns are erased and germ cell-specific patterns are established. Three de novo DNA methyltransferases (DNMTs) are essential for shaping male germ cell DNA methylation in mice: DNMT3C and DNMT3A enzymes and DNMT3L co-factor. DNMT3C was shown to selectively methylate young TEs. However, the targets and function of DNMT3A was still unknown. During my PhD, I investigated the interplay between DNMT3A and DNMT3C in the epigenetic regulation of spermatogenesis. First (project 1), I reported a striking division of labor: while DNMT3C prevents TEs from interfering with meiosis, DNMT3A broadly methylates the genome—except DNMT3C-dependent TEs—and controls spermatogonial stem cell (SSC) plasticity. By single-cell RNA-seq and chromatin states profiling, I found that Dnmt3A mutant SSCs cannot differentiate due to spurious enhancer activation that enforces a stem cell gene program. I thus demonstrated a novel function for DNA methylation for SSC differentiation and life-long spermatogenesis supply. Second (project 2), I investigated the chromatin determinants of DNMT3C specificity towards young TEs. I found that these sequences present unique dynamics: first a bivalent H3K4me3-H3K9me3 enrichment, followed by a switch to H3K9me3-only. H3K9me3-enrichment was also a hallmark of the sequences that gain DNA methylation upon ectopic DNMT3C expression in cultured embryonic stem cells. As a whole, my work provided novel insights into the complexity of DNA methylation-based control of reproduction
Oksuz, Samet. „Targeting IL-4 locus for epigenetic reprogramming“. University of Cincinnati / OhioLINK, 2014. http://rave.ohiolink.edu/etdc/view?acc_num=ucin1423581203.
Der volle Inhalt der QuelleYong, Qian Yu. „A screen for modifiers of epigenetic reprogramming“. Thesis, Queensland University of Technology, 2011. https://eprints.qut.edu.au/50955/1/Qian_Yu_Yong_Thesis.pdf.
Der volle Inhalt der QuelleAguilar, Sanchez Cristina. „Epigenetic transitions in cardiovascular development and cell reprogramming“. Thesis, University of Edinburgh, 2017. http://hdl.handle.net/1842/28787.
Der volle Inhalt der QuelleWanichnopparat, Wachiraporn [Verfasser]. „Epigenetic reprogramming of hepatocyte-like cells / Wachiraporn Wanichnopparat“. Saarbrücken : Saarländische Universitäts- und Landesbibliothek, 2020. http://d-nb.info/1239645333/34.
Der volle Inhalt der QuelleBücher zum Thema "Epigenetic reprograming"
Meissner, Alexander, und Jörn Walter, Hrsg. Epigenetic Mechanisms in Cellular Reprogramming. Berlin, Heidelberg: Springer Berlin Heidelberg, 2015. http://dx.doi.org/10.1007/978-3-642-31974-7.
Der volle Inhalt der QuelleAncelin, Katia, und Maud Borensztein, Hrsg. Epigenetic Reprogramming During Mouse Embryogenesis. New York, NY: Springer US, 2021. http://dx.doi.org/10.1007/978-1-0716-0958-3.
Der volle Inhalt der QuellePei, Gang, Hrsg. Epigenetic Mechanisms of Cell Programming and Reprogramming. Singapore: Springer Nature Singapore, 2023. http://dx.doi.org/10.1007/978-981-19-7419-9.
Der volle Inhalt der QuelleMeissner, Alexander, und Jörn Walter. Epigenetic Mechanisms in Cellular Reprogramming. Springer, 2015.
Den vollen Inhalt der Quelle findenMeissner, Alexander, und Jö Walter. Epigenetic Mechanisms in Cellular Reprogramming. Springer London, Limited, 2014.
Den vollen Inhalt der Quelle findenEpigenetic Mechanisms In Cellular Reprogramming. Springer-Verlag Berlin and Heidelberg GmbH &, 2014.
Den vollen Inhalt der Quelle findenMeissner, Alexander, und Jörn Walter. Epigenetic Mechanisms in Cellular Reprogramming. Springer, 2016.
Den vollen Inhalt der Quelle findenPei, Gang. Epigenetic Mechanisms of Cell Programming and Reprogramming. Springer, 2022.
Den vollen Inhalt der Quelle findenAncelin, Katia, und Maud Borensztein. Epigenetic Reprogramming During Mouse Embryogenesis: Methods and Protocols. Springer, 2021.
Den vollen Inhalt der Quelle findenAncelin, Katia, und Maud Borensztein. Epigenetic Reprogramming During Mouse Embryogenesis: Methods and Protocols. Springer, 2020.
Den vollen Inhalt der Quelle findenBuchteile zum Thema "Epigenetic reprograming"
Koul, Hari K., Sankaralingam Saikolappan, Binod Kumar und Sweaty Koul. „Targeting ROS-Induced Epigenetic Reprograming in Cancer Stem Cells“. In Handbook of Oxidative Stress in Cancer: Therapeutic Aspects, 1373–86. Singapore: Springer Nature Singapore, 2022. http://dx.doi.org/10.1007/978-981-16-5422-0_69.
Der volle Inhalt der QuelleKoul, Hari K., Sankaralingam Saikolappan, Binod Kumar und Sweaty Koul. „Targeting ROS Induced Epigenetic Reprograming in Cancer Stem Cells“. In Handbook of Oxidative Stress in Cancer: Therapeutic Aspects, 1–15. Singapore: Springer Nature Singapore, 2022. http://dx.doi.org/10.1007/978-981-16-1247-3_69-1.
Der volle Inhalt der QuelleParo, Renato, Ueli Grossniklaus, Raffaella Santoro und Anton Wutz. „Regeneration and Reprogramming“. In Introduction to Epigenetics, 135–49. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-68670-3_7.
Der volle Inhalt der QuelleLindroth, Anders M., Yoon Jung Park und Christoph Plass. „Epigenetic Reprogramming in Cancer“. In Epigenetic Mechanisms in Cellular Reprogramming, 193–223. Berlin, Heidelberg: Springer Berlin Heidelberg, 2014. http://dx.doi.org/10.1007/978-3-642-31974-7_9.
Der volle Inhalt der QuelleLin, Jer-Young, und Tzung-Fu Hsieh. „Epigenetic Reprogramming During Plant Reproduction“. In Plant Epigenetics, 405–25. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-55520-1_20.
Der volle Inhalt der QuelleAlberio, Ramiro, und Andrew D. Johnson. „Epigenetic Reprogramming with Oocyte Molecules“. In Nuclear Reprogramming and Stem Cells, 45–57. Totowa, NJ: Humana Press, 2011. http://dx.doi.org/10.1007/978-1-61779-225-0_5.
Der volle Inhalt der QuelleNakamura, Toshinobu, und Toru Nakano. „Stella and Zygotic Reprogramming“. In Epigenetic Mechanisms in Cellular Reprogramming, 31–42. Berlin, Heidelberg: Springer Berlin Heidelberg, 2014. http://dx.doi.org/10.1007/978-3-642-31974-7_2.
Der volle Inhalt der QuelleKádár, András, und Tibor A. Rauch. „Epigenetic Reprogramming in Lung Carcinomas“. In Patho-Epigenetics of Disease, 159–77. New York, NY: Springer New York, 2012. http://dx.doi.org/10.1007/978-1-4614-3345-3_7.
Der volle Inhalt der QuelleSchwarzer, Caroline, und Michele Boiani. „The Oocyte Determinants of Early Reprogramming“. In Epigenetic Mechanisms in Cellular Reprogramming, 1–29. Berlin, Heidelberg: Springer Berlin Heidelberg, 2014. http://dx.doi.org/10.1007/978-3-642-31974-7_1.
Der volle Inhalt der QuelleBošković, Ana, und Maria-Elena Torres-Padilla. „Histone Variants and Reprogramming in Early Development“. In Epigenetic Mechanisms in Cellular Reprogramming, 43–68. Berlin, Heidelberg: Springer Berlin Heidelberg, 2014. http://dx.doi.org/10.1007/978-3-642-31974-7_3.
Der volle Inhalt der QuelleKonferenzberichte zum Thema "Epigenetic reprograming"
Lee, J., T. X. Pham, J. Guan, N. Caporarello, J. A. Meridew, K. M. Choi, D. Jones et al. „The Epigenetic Repressor CBX5 Drives Fibroblast Metabolic Reprograming and Lung Fibrogenesis“. In American Thoracic Society 2021 International Conference, May 14-19, 2021 - San Diego, CA. American Thoracic Society, 2021. http://dx.doi.org/10.1164/ajrccm-conference.2021.203.1_meetingabstracts.a1144.
Der volle Inhalt der QuelleHong, J., J. Lee, T. X. Pham, J. A. Meridew, K. M. Choi, S. K. Huang, G. Lomberk, R. Urrutia und G. Ligresti. „Inhibition of the Epigenetic Regulator CBX5 Promotes Fibroblast Metabolic Reprograming and Attenuates Lung Fibrosis“. In American Thoracic Society 2023 International Conference, May 19-24, 2023 - Washington, DC. American Thoracic Society, 2023. http://dx.doi.org/10.1164/ajrccm-conference.2023.207.1_meetingabstracts.a2212.
Der volle Inhalt der QuelleSodre, Andressa L., David M. Woods, Amod Sarnaik, Brian C. Betts, Steven Quayle, Simon Jones und Jeffrey Weber. „Abstract 638: Epigenetic reprograming of immune cells through selective inhibition of HDAC6 reduces suppressive phenotypes and augments anti-tumor properties of T-cells“. In Proceedings: AACR Annual Meeting 2017; April 1-5, 2017; Washington, DC. American Association for Cancer Research, 2017. http://dx.doi.org/10.1158/1538-7445.am2017-638.
Der volle Inhalt der QuelleShen, Li, Bob McGray, Anthony Miliotto, Ariel Francois, Cheryl Eppolito, Junko Matsuzaki, Takemasa Tsuji, Richard Koya und Adekunle Odunsi. „Abstract PR12: Epigenetic reprograming promotes an immunogenic ovarian tumor microenvironment and synergizes with adoptive transfer of engineered T cells expressing NY-ESO-1 specific T cell receptors“. In Abstracts: AACR Special Conference: Addressing Critical Questions in Ovarian Cancer Research and Treatment; October 1-4, 2017; Pittsburgh, PA. American Association for Cancer Research, 2018. http://dx.doi.org/10.1158/1557-3265.ovca17-pr12.
Der volle Inhalt der QuelleParfenova, P. S., N. A. Mikhailova, M. G. Khotin und N. A. Kraskovskaya. „DIRECT REPROGRAMMING OF PATIENT FIBROBLAST INTO NEURON-LIKE CELLS AS A PROMISING MODEL OF HUNTINGTON’S DISEASE“. In X Международная конференция молодых ученых: биоинформатиков, биотехнологов, биофизиков, вирусологов и молекулярных биологов — 2023. Novosibirsk State University, 2023. http://dx.doi.org/10.25205/978-5-4437-1526-1-111.
Der volle Inhalt der QuelleShiao, Yih-Horng, W. G. Alvord, Xin Ge, Joshua M. Spurrier, Sean D. McCann, Cuiju Wang, Erik B. Crawford et al. „Abstract 184: Stress-induced father-mediated45S rRNAgenetic and epigenetic reprogramming“. In Proceedings: AACR 101st Annual Meeting 2010‐‐ Apr 17‐21, 2010; Washington, DC. American Association for Cancer Research, 2010. http://dx.doi.org/10.1158/1538-7445.am10-184.
Der volle Inhalt der QuelleBenavente, Claudia A., und Michael A. Dyer. „Abstract A163: A role for epigenetic reprogramming in retinoblastoma tumorigenesis.“ In Abstracts: AACR-NCI-EORTC International Conference: Molecular Targets and Cancer Therapeutics--Nov 12-16, 2011; San Francisco, CA. American Association for Cancer Research, 2011. http://dx.doi.org/10.1158/1535-7163.targ-11-a163.
Der volle Inhalt der QuelleTeng, Shuaishuai, Yang Li, Ming Yang, Rui Qi, Qianyu Wang, Zhi Lu und Dong Wang. „Abstract 4334: Epigenetic reprogramming of tissue-specific transcription promotes metastasis“. In Proceedings: AACR Annual Meeting 2019; March 29-April 3, 2019; Atlanta, GA. American Association for Cancer Research, 2019. http://dx.doi.org/10.1158/1538-7445.sabcs18-4334.
Der volle Inhalt der QuelleTeng, Shuaishuai, Yang Li, Ming Yang, Rui Qi, Qianyu Wang, Zhi Lu und Dong Wang. „Abstract 4334: Epigenetic reprogramming of tissue-specific transcription promotes metastasis“. In Proceedings: AACR Annual Meeting 2019; March 29-April 3, 2019; Atlanta, GA. American Association for Cancer Research, 2019. http://dx.doi.org/10.1158/1538-7445.am2019-4334.
Der volle Inhalt der QuellePuca, Loredana, Dong Gao, Myriam Kossai, Joanna Cyrta, Clarisse Marotz, Juan Miguel Mosquera, Theresa Y. MacDonald et al. „Abstract B41: Targeting androgen-independent prostate cancer through epigenetic reprogramming“. In Abstracts: AACR Special Conference: Chromatin and Epigenetics in Cancer; September 24-27, 2015; Atlanta, GA. American Association for Cancer Research, 2016. http://dx.doi.org/10.1158/1538-7445.chromepi15-b41.
Der volle Inhalt der Quelle