Dissertationen zum Thema „Epidermis“
Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an
Machen Sie sich mit Top-50 Dissertationen für die Forschung zum Thema "Epidermis" bekannt.
Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.
Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.
Sehen Sie die Dissertationen für verschiedene Spezialgebieten durch und erstellen Sie Ihre Bibliographie auf korrekte Weise.
Fear, Mark William. „Wnt signalling in normal adult epidermis and epidermal tumours“. Thesis, Queen Mary, University of London, 2003. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.406139.
Der volle Inhalt der QuelleAkinduro, Olufolake A. E. „Autophagy in epidermis“. Thesis, Queen Mary, University of London, 2013. http://qmro.qmul.ac.uk/xmlui/handle/123456789/8703.
Der volle Inhalt der QuelleO'Shaughnessy, Ryan Francis Lucas. „Analysis of gene expression in normal and neoplastic keratinocytes“. Thesis, University College London (University of London), 2000. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.325883.
Der volle Inhalt der QuelleGdula, Michal R. „Establishing tissue-specific chromatin organization during development of the epidermis. Nuclear architecture of different layers of murine epidermis and the role of p63 and Satb1 in establishing tissue-specific organization of the epidermal differentiation complex locus“. Thesis, University of Bradford, 2011. http://hdl.handle.net/10454/5382.
Der volle Inhalt der QuelleLöwenau, Lilian Julia [Verfasser]. „Human epidermis reconstructed from UV-B irradiated keratinocytes mimics epidermal ageing / Lilian Julia Löwenau“. Berlin : Freie Universität Berlin, 2016. http://d-nb.info/1121588123/34.
Der volle Inhalt der QuelleLedesma, Jenilyn A. „A stereological and AgNOR analysis of the epidermis and naevi of Chinese“. Thesis, Hong Kong : University of Hong Kong, 1997. http://sunzi.lib.hku.hk/hkuto/record.jsp?B18656547.
Der volle Inhalt der QuelleGdula, Michal Ryszard. „Establishing tissue-specific chromatin organization during development of the epidermis : nuclear architecture of different layers of murine epidermis and the role of p63 and Satb1 in establishing tissue-specific organization of the epidermal differentiation complex locus“. Thesis, University of Bradford, 2011. http://hdl.handle.net/10454/5382.
Der volle Inhalt der QuelleRaj, N. „Mechanistic studies on the human epidermis“. Thesis, University College London (University of London), 2016. http://discovery.ucl.ac.uk/1531697/.
Der volle Inhalt der QuelleEasty, David Julia. „A study of the biochemistry and immunochemistry of differentiation of the normal epidermis and involved psoriatic epidermis“. Thesis, Imperial College London, 1988. http://hdl.handle.net/10044/1/47044.
Der volle Inhalt der QuelleHarper, Erin Gail. „Adhesion to laminin 5 suppresses p38 map kinase and activating transcription factor 3 in leading keratinocytes of epidermal wounds /“. Thesis, Connect to this title online; UW restricted, 2004. http://hdl.handle.net/1773/9299.
Der volle Inhalt der QuelleSadowski, Tomasz [Verfasser], Kai [Gutachter] Simons und Michael [Gutachter] Meurer. „Das physiologische Lipidom menschlicher Epidermis : The physiological lipidome of human epidermis / Tomasz Sadowski ; Gutachter: Kai Simons, Michael Meurer“. Dresden : Technische Universität Dresden, 2019. http://d-nb.info/1227196695/34.
Der volle Inhalt der QuelleSadowski, Tomasz [Verfasser], Kai Gutachter] Simons und Michael [Gutachter] [Meurer. „Das physiologische Lipidom menschlicher Epidermis : The physiological lipidome of human epidermis / Tomasz Sadowski ; Gutachter: Kai Simons, Michael Meurer“. Dresden : Technische Universität Dresden, 2019. http://d-nb.info/1227196695/34.
Der volle Inhalt der QuellePanzer, Rüdiger. „Hautbarrierestörung induziert TLR9-Expression in der Epidermis /“. Kiel, 2008. http://opac.nebis.ch/cgi-bin/showAbstract.pl?sys=000254021.
Der volle Inhalt der QuelleGaisford, Wendy Caron. „Aspects of methicillin resistance in Staphylococcus epidermis“. Thesis, University of Cambridge, 1988. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.302972.
Der volle Inhalt der QuelleGumbrys, Aurimas. „Epidermis and re-epithelialization in Schmidtea mediterranea“. Thesis, Open University, 2017. http://oro.open.ac.uk/50972/.
Der volle Inhalt der QuellePavlish, John R. „Polymer substrates with microneedles for epidermis injection“. Thesis, Massachusetts Institute of Technology, 2009. http://hdl.handle.net/1721.1/58379.
Der volle Inhalt der QuelleCataloged from PDF version of thesis.
Includes bibliographical references (p. 31).
Injections of medicine into the body are commonplace, whether they be intravenous or capsules. The benefit of using a macroneedle for injecting cargo into the circulatory system is its simplicity. However, introduction of the needle intravenously can also include foreign matter if the needle is unsterile. Due to macroneedles ability to pierce skin and veins for effortless insertion, it can also damage unintentional areas if a patient resists the needle, or if it is poorly inserted. Thus the body can be subjected to undesirable materials beyond the intension medicine cargo. Current research reevaluates methods of introducing cargo medicine into the body. Popular models consider polymer substrates with different surface designs and medicine release. Thin polymer substrates allow flexible construction for adhering to tissue while specfic polymers with high Young's modulus create strength for rigidity. Cargo can be placed within or on top of the substrate itself for release to the epidermis or dermis in stages, which is difficult for both oral medicine and macroneedles. A spectic substrate system with microneedles can prevent irflammation or tear of the epidermis but still puncture for cargo release. Depending on the substrate contact surface area, a larger microneedle array can be utilized, for a higher success rate of release beyond individual microneedles. Microneedles can carry and release medicine either internally or externally through the epidermis. In the latter, Langerhans cells can be utilized for activating the immune system by releasing antigenes. Aims of this thesis show the effects of polymer microneedle substrates with methods for constructing the substrate arrays that are flexible adherent to the epidermis, rigid enough for puncturing the stratum corneum, but not weak enough to buckle or be brittle.
by John R Pavlish.
S.B.
Blackstock, N. „Factors affecting the structure of salmonid epidermis“. Thesis, University of Stirling, 1985. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.354053.
Der volle Inhalt der QuelleLössner, Isabel. „Die Rolle des bakteriellen Insertionselements IS256 bei der Modulation der Biofilmbildung in Staphylococcus epidermidis“. [S.l. : s.n.], 2002. http://deposit.ddb.de/cgi-bin/dokserv?idn=966050983.
Der volle Inhalt der QuelleNorlén, Lars Petter Oskar. „The skin barrier : structure and physical function /“. Stockholm, 1999. http://diss.kib.ki.se/1999/91-628-3533-5/.
Der volle Inhalt der QuelleFairclough, Rebecca J. „Effect of Hailey-Hailey disease mutations on the function of a new variant of human secretory pathway Ca²âº/Mn²âº-ATPase (hSPCA1)“. Thesis, University of Oxford, 2003. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.275321.
Der volle Inhalt der QuelleChakrabarty, Kaushik H. „Development and evaluation of epidermal/dermal skin composites“. Thesis, University of Sheffield, 1999. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.273737.
Der volle Inhalt der QuelleJones, Keith Thomas. „The role of intracellular calcium in the control of keratinocyte differentiation“. Thesis, University of Liverpool, 1994. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.359170.
Der volle Inhalt der QuelleKettenbach, Arminja Nadine. „Molekulare Mechanismen in Zelldifferenzierung und Zellteilung“. [S.l. : s.n.], 2006.
Den vollen Inhalt der Quelle findenPfeiffer, Sven. „Wingless transport in the embryonic epidermis of drosophila“. Thesis, University College London (University of London), 2001. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.248103.
Der volle Inhalt der QuelleSilva-Vargas, Violeta. „Characterisation and modulation of patterning of mammalian epidermis“. Thesis, University College London (University of London), 2007. http://discovery.ucl.ac.uk/1445848/.
Der volle Inhalt der QuellePearton, David Jonathan. „Proprotein convertases in terminal differentiation of epidermis and processing of the profilaggrin amino terminus /“. Thesis, Connect to this title online; UW restricted, 2000. http://hdl.handle.net/1773/9230.
Der volle Inhalt der QuelleSully, Katherine L. „Inhibition of mammalian target of rapamycin (mTOR) in epidermis“. Thesis, Queen Mary, University of London, 2012. http://qmro.qmul.ac.uk/xmlui/handle/123456789/3360.
Der volle Inhalt der QuelleSpencer, Mary-Jane. „The influence of ultraviolet B radiation on human epidermis“. Thesis, University of Edinburgh, 1994. http://hdl.handle.net/1842/20808.
Der volle Inhalt der QuelleEnikanolaiye, Adebola. „The Role of the Claudin 6 Cytoplasmic Tail In Epidermal Differentiation and the Role of Cdx In Endodermal Development“. Thesis, Université d'Ottawa / University of Ottawa, 2015. http://hdl.handle.net/10393/32354.
Der volle Inhalt der QuelleSouto, Luis Ricardo Martinhão. „Modelo de pele humana (derme + epiderme) reconstruida in vitro“. [s.n.], 2005. http://repositorio.unicamp.br/jspui/handle/REPOSIP/313309.
Der volle Inhalt der QuelleDissertação (mestrado) - Universidade Estadual de Campinas, Faculdade de Ciencias Medicas
Made available in DSpace on 2018-08-04T03:54:34Z (GMT). No. of bitstreams: 1 Souto_LuisRicardoMartinhao_M.pdf: 2402921 bytes, checksum: a79b6ae181ce1b24d01ec608815d8bf7 (MD5) Previous issue date: 2005
Resumo: A obtenção de uma pele humana que apresente derme e epiderme, reconstruída a partir de células isoladas de pacientes, possibilita a realização de enxertos autólogos de pele reconstruída em laboratório (in vitro) em pacientes com áreas doadoras escassas além de permitir ensaios com substâncias químicas e drogas in vitro e não mais in vivo. A partir da cultura de fibroblastos humanos, é possível obter um número suficiente de células que podem ser injetadas em uma matriz de colágeno bovino tipo I que, mantida imersa em meio de cultura, específico para fibroblastos, permite a formação de uma derme humana reconstruída in vitro. Sobre essa derme, através de cultura de queratinócitos e melanócitos humanos, forma-se uma epiderme diferenciada levando à formação de uma pele humana reconstruída in vitro, constituída de derme e epiderme associadas. Essa pele humana formada é, histologicamente, semelhante à pele humana in vivo. Na derme, identifica-se o tecido colágeno, com suas células, e a matriz extracelular organizados paralelamente à epiderme. Esta se desenvolve em várias camadas. Não há distinção entre derme e epiderme no experimento controle, onde não foi utilizado o colágeno bovino tipo I
Abstract: The technique to obtain human skin presenting dermis and epidermis reconstructed from cells isolated from patients allows the performance of autologous grafts of skin reconstructed in laboratory (in vitro) on patients with scarce donor sites, in addition to permitting trials with chemical substances and drugs no more in vivo, but in vitro. It is possible to obtain a sufficient number of cells from human fibroblast culture that can be injected in bovine collagen type I matrix and kept submerged in a specific culture medium for fibroblasts. This will permit the formation of human dermis reconstructed in vitro. On this dermis, through culture of human keratinocytes and melanocytes, a differentiated epidermis is formed, leading to the creation of human skin reconstructed in vitro, composed of associated dermis and epidermis. This human skin is histologically formed in the same way as human skin in vivo. Collagen tissue can be identified in the dermis, with its cells and extracellular matrix organized in parallel to the epidermis, which is developed in several layers
Mestrado
Patologia Clinica
Mestre em Ciências Médicas
Koster, Jan Johannes Bernardus. „Plakin interactions in the hemidesmosome“. [S.l. : Amsterdam : s.n.] ; Universiteit van Amsterdam [Host], 2003. http://dare.uva.nl/document/69999.
Der volle Inhalt der QuelleBoudonck, Kurt. „Dynamic organization of transcription and transcript processing components in plants“. Thesis, University of East Anglia, 1999. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.302341.
Der volle Inhalt der QuelleCarpenter, Kevin Joseph. „Structure and evolution of the leaf epidermis in basal angiosperms /“. For electronic version search Digital dissertations database. Restricted to UC campuses. Access is free to UC campus dissertations, 2005. http://uclibs.org/PID/11984.
Der volle Inhalt der QuelleWelss, Thomas. „Molekularbiologische Untersuchungen differenziell exprimierter Gene in Tumoren der humanen Epidermis“. [S.l.] : [s.n.], 2002. http://deposit.ddb.de/cgi-bin/dokserv?idn=965458849.
Der volle Inhalt der QuellePanchal, Heena. „Neuregulin3 alters cell fate in the epidermis and mammary gland“. Thesis, Institute of Cancer Research (University Of London), 2008. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.498460.
Der volle Inhalt der QuelleHwang, Hwei-tein. „Characterisation of cDNA clones for mRNAs expressed in leaf epidermis“. Thesis, University of Nottingham, 2003. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.289432.
Der volle Inhalt der QuelleLowell, Sally Elizabeth. „Delta and the fate of stem cells in human epidermis“. Thesis, University College London (University of London), 2001. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.402134.
Der volle Inhalt der QuelleNuttall, A. „The role of the epidermis in pathogenesis of systemic sclerosis“. Thesis, University College London (University of London), 2010. http://discovery.ucl.ac.uk/19394/.
Der volle Inhalt der QuelleWang, Sha. „The Apicobasal Polarity Protein Network during Stratified Xenopus Epidermis Development“. University of Cincinnati / OhioLINK, 2014. http://rave.ohiolink.edu/etdc/view?acc_num=ucin1397736009.
Der volle Inhalt der QuellePyee, Jaeho. „Isolation and characterization of plant epidermis-specific proteins and genes /“. The Ohio State University, 1994. http://rave.ohiolink.edu/etdc/view?acc_num=osu1487853913103024.
Der volle Inhalt der QuelleGallagher, Kimberly L. „Analysis of asymmetric cell divisions in the maize leaf epidermis /“. Diss., Connect to a 24 p. preview or request complete full text in PDF format. Access restricted to UC campuses, 2000. http://wwwlib.umi.com/cr/ucsd/fullcit?p3007134.
Der volle Inhalt der QuelleTerzi, Rodríguez Denise Andrea. „Caracterización Anatómica de la Epidermis Foliar en Sequoia sempervirens (D. Don)“. Tesis, Universidad de Chile, 2008. http://repositorio.uchile.cl/handle/2250/105013.
Der volle Inhalt der QuelleVorstenbosch, Joshua. „Overexpression of CD109 in the epidermis reduces skin fibrosis and inflammation“. Thesis, McGill University, 2013. http://digitool.Library.McGill.CA:80/R/?func=dbin-jump-full&object_id=116840.
Der volle Inhalt der QuelleLe facteur de croissance transformant bêta (TGF-ß), est un facteur de croissance multifonctionnel impliqué dans une multitude de processus cellulaires tel que la cicatrisation, la déposition de matrice extracellulaire, l'inflammation et la fibrose. Ainsi, l'inhibition de TGF-ß semble être une cible de choix pour réduire les désordres fibrotiques de la peau. Notre laboratoire a identifié CD109, une proteine de 180 kDa ancrée à un glycosylphosphatidylinositol agissant comme co-récepteur cellulaire de TGF-ß. Ce nouveau récepteur, auquel TGF- ß s'ancre avec très haute affinité, aurait pour propriété d'inhiber la signalisation intra-cellulaire de TGF-ß. Les propriétés antagonistes de CD109 suggèrent que la modulation de son expression in vivo dans la peau pourrait améliorer la cicatrisation et la fibrose cutanée. Pour investiguer le role de CD109 dans la peau, nous avons généré une souris transgénique en clonant CD109 en aval du promoteur de keratin-14, limitant ainsi la surexpression de CD109 à l'épiderme.Afin d'explorer le rôle de CD109 au sein de la guérison des plaies, nous avons conduit des études de ce processus où nous avons pu observer une amélioration des paramètres de cicatrisation tels que la réduction de la différentiation des myofibroblastes, la réduction du tissu de granulation et une amélioration de l'architecture de la matrice extracellulaire chez les souris transgénique CD109 comparées au souris de génotype sauvage pour la même portée. De plus, la surexpression de CD109 dans l'épiderme inhibe le recrutement de cellules immunitaires au site de la plaie et est associé avec une réduction de la signalisation de TGF-ß ainsi que l'expression des cytokines pro-inflammatoire IL-1 et MCP-1. Toutes ces données, suggèrent que la surexpression de CD109 dans l'épiderme inhibe la fibrose cutanée lors de la guérison des plaies.Nous avons ensuite examiné le rôle de CD109 lors de la fibrose en utilisant un model de sclérodermie murine induit par bleomycine. La souris transgénique CD109 exprime des niveaux réduits des protéines fibronectine et collagène 1 dans la matrice extracellulaire, ainsi que des niveaux réduits de phosphorylation de Smad2/3. Elle démontre aussi une meilleure architecture de la matrice extracellulaire et une réduction de l'épaisseur de la couche dermique. Toutes ces données suggèrent que CD109 résiste à la fibrose induite par bleomycine. Cela pourrait donc en faire une cible attrayante pour traitement thérapeutique des désordres fibrotiques de la peau.Pour mieux comprendre comment CD109 modifie l'action de TGF-ß in vivo, nous avons analysé les molécules de signalisation de TGF-ß dans la peau, les keratinocytes primaires et les fibroblastes primaires récoltés des souris transgéniques et de leur sœurs de portée du génotype sauvage. Les souris transgéniques CD109 expriment substantiellement moins de collagène I, de fibronectine et démontre une expression élevée de ALK1 et une activation élevée de la voie Smad1/5/8. Les études utilisant des keratinocytes cultivés démontrent une phosphorylation de Smad et une expression des gènes de la matrice extracellulaire similaire; l'expression de ALK1 et ALK5 étant toutefois plus élevée dans les keratinocytes transgéniques CD109 comparé à ceux du génotype sauvage. Les fibroblastes des deux génotypes démontrent des profils d'expression similaires. La signalisation différentielle de TGF-ß pourrait rehausser nos observations précédente et ainsi renforcer l'idée que la surexpression de CD109 inhibe la cicatrisation et la fibrose cutanée in vivo.Ainsi, les données présentée démontrent que CD109 est un puissant altérateur des processus physiologiques de guérison des plaies, cicatrisation, fibrose et inflammation dans la peau in vivo. La capacité pour CD109 de réduire la cicatrisation, la fibrose et l'inflammation dans la peau in vivo en font une cible attrayante pour traiter les désordres fibrotiques de la peau.
Courtney, Alan Peter. „The role of innexins in the embryonic epidermis of Drosophila melanogaster“. Thesis, University of Sussex, 2005. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.413334.
Der volle Inhalt der QuelleFREZZA, VALENTINA. „Role of TG3 in the protection of epidermis from UVB photodamage“. Doctoral thesis, Università degli Studi di Roma "Tor Vergata", 2015. http://hdl.handle.net/2108/202954.
Der volle Inhalt der QuelleTransglutaminase (TG3) is a soluble protein that belongs to an important family of Ca2+-dependent enzymes responsible for protein cross-linking. Transglutaminases stabilize protein assemblies by catalysing the formation of intra- or intermolecular Nε(γglutamyl)lysine bonds between adjacent polypeptides. TGs family includes nine members, among them three (TG1, TG3 and TG5) expressed in the skin during keratinocyte differentiation. This process is an exclusive model of terminal differentiation and programmed cell death, also known as cornification. During cornification, TG3 undergoes to proteolytic activation resulting in high cross-linking activity enzyme. It cooperates with TG1 for the assembly and the reinforcement of the stratum corneum, by catalysing the cross-linking of several structural proteins, including loricrin, small proline-rich proteins, and trichohyalin. In our study, we characterized a novel TG3-deficient mouse. TG3-depleted mice have normal gross morphology, but we identified an altered expression of the late differentiation markers in the TG3KO epidermis. Since CEs isolated from TG3KO epidermis are more susceptible to sonication than WT, we hypothesized that TG3KO mice could be more sensitive to apoptosis induced by UVB than WT mice, due to the decreased UVBfiltering capacity of the stratum corneum. We found that the skin of TG3-deficient mice is high sensitive to the formation of cyclobutane pyrimidine dimers after UVB irradiation of new-born mice skin, leading to increased level of UVB-induced cell death. This data have been confirmed by a stronger activation of the caspase 3 and a higher amount of TUNEL-positive cells in irradiated TG3KO skin. Our results indicate that TG3 strongly contributes to the protective function of the stratum corneum from UVB, by reinforcing CEs adding specific crosslinks. This novel finding could explain the reason for including TG3 among candidate tumour suppressor genes in human head and neck cancers.
Wood, Julian Lawrence. „The role of pH signalling in stomatal responses“. Thesis, University of Oxford, 1996. https://ora.ox.ac.uk/objects/uuid:e97ed751-5a06-4bc7-9a48-d09b8a93d9a8.
Der volle Inhalt der QuelleOwen, Markus Roger. „Mathematical modelling of the macrophage invasion of tumours and juxtacrine signalling in epidermal wound healing“. Thesis, University of Warwick, 1997. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.344031.
Der volle Inhalt der QuelleLarivière, Nathalie. „Integral Roles for the Tight Junction Protein Claudin-6 in Regulating Epidermal Homeostasis“. Thesis, Université d'Ottawa / University of Ottawa, 2014. http://hdl.handle.net/10393/30650.
Der volle Inhalt der QuelleTan, Wei Min. „Single cell gene expression profiling of human epidermal keratinocytes“. Thesis, University of Cambridge, 2011. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.609685.
Der volle Inhalt der QuelleLübbe, Katharina. „Entwicklung und Einsatz eines In-vitro-Ischämiemodels zur Untersuchung zellulärer Pathomechanismen der Klauenrehe des Rindes“. Doctoral thesis, Universitätsbibliothek Leipzig, 2015. http://nbn-resolving.de/urn:nbn:de:bsz:15-qucosa-171594.
Der volle Inhalt der QuelleThe subclinical laminitis or claw horn disruption (CHD) is of great economic importance in the dairy industry as it causes lameness, poor general condition and reduced performance. Despite extensive research efforts, the pathomechanism of CHD remains widely unclear. The current hypotheses on CHD pathogenesis include ischemic alterations of the epidermal keratinocytes resulting from an impaired blood supply. This causes an alteration of cell proliferation, a dermo-epidermal separation and an impaired keratinization and horn production. Therefore, in vitro ischemia models are of critical importance in clarification of the epidermal responses to an altered microcirculation. The aim of this study was the establishment of an in vitro ischemia model based on bovine claw keratinocytes. This in vitro model should enable the investigation of cellular pathomechanisms following exposure to ischemia, hypoxia and glucose deprivation. An additional aim was the analysis of the differentiation pattern of keratinocytes under ischemic, hypoxic and hypoglycaemic conditions. To establish the in vitro ischemia model, the keratinocytes were exposed to oxygen-glucose deprivation (OGD). In addition, this model allowed the parallel examination of hypoxic and hypoglycaemic conditions on bovine claw keratinocytes. The experiments were divided into a short-term analysis over 96h and a long-term analysis over three weeks. Measurement of cell viability was performed by LDH(lactatedehydrogenase) and MTT(3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetra- zolium bromide) assays. Furthermore, the differentiation pattern of the keratinocytes after exposure to ischemia, hypoxia and glucose deprivation was detected by western blot analysis of the focus on expression of involucrin and loricrin. The highest cytotoxic effect was measured after short exposure to OGD followed by a time-dependent decrease of cell viability and extensive morphological changes of the keratinocytes. Hypoxic conditions lead to a time-dependent decrease of cell viability with the highest cytotoxicity after two weeks. The keratinocytes showed slight changes in cell morphology while maintaining a confluent cell layer. Exposure of keratinocytes to glucose deprivation showed a high decrease of cell viability and strong morphological changes. Furthermore, western blot analysis showed an altered expression pattern with increased involucrin and loricrin levels after exposure to OGD, hypoxia and glucose deprivation. The present study established for the first time an in vitro ischemia model based on bovine claw keratinocytes to study the cellular mechanisms of the epidermis. After exposure to OGD, keratinocytes showed the highest loss in cell viability and an altered cell differentiation. This reflects the pathophysiological changes following epidermal ischemia occurring during the pathogenesis of CHD. The massive cellular alterations after glucose deprivation provide good evidence for the importance of glucose in the cellular metabolism of keratinocytes. An epidermal glucose deficiency may occur in combination with a negative energy balance during peripartal period in cattle. The results of hypoxia show the different adaptive mechanisms of keratinocytes to hypoxic conditions which are present in the epidermis during cell differentiation. Thus, the in vitro ischemia model has a great potential for use in research into CHD pathogenesis and pathomechanisms associated with ischemia. On one side, it is possible to investigate the pathological changes following ischemia during CHD. On the other side, the model offers useful information on physiological response mechanisms of the epidermis that correlate with cell differentiation