Auswahl der wissenschaftlichen Literatur zum Thema „Enzymatic functionalization“

Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an

Wählen Sie eine Art der Quelle aus:

Machen Sie sich mit den Listen der aktuellen Artikel, Bücher, Dissertationen, Berichten und anderer wissenschaftlichen Quellen zum Thema "Enzymatic functionalization" bekannt.

Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.

Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.

Zeitschriftenartikel zum Thema "Enzymatic functionalization"

1

Lewis, Jared C., Pedro S. Coelho und Frances H. Arnold. „Enzymatic functionalization of carbon–hydrogen bonds“. Chem. Soc. Rev. 40, Nr. 4 (2011): 2003–21. http://dx.doi.org/10.1039/c0cs00067a.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
2

Acero, Enrique Herrero, Caroline Gamerith, Andreas Ortner, Doris Ribitsch, Georg Steinkellner, Karl Gruber, Helmut Schwab und Georg M. Guebitz. „Strategies for enzymatic functionalization of synthetic polymers“. New Biotechnology 31 (Juli 2014): S31. http://dx.doi.org/10.1016/j.nbt.2014.05.1684.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
3

Herrera-González, Azucena, Gema Núñez-López, Sandrine Morel, Lorena Amaya-Delgado, Georgina Sandoval, Anne Gschaedler, Magali Remaud-Simeon und Javier Arrizon. „Functionalization of natural compounds by enzymatic fructosylation“. Applied Microbiology and Biotechnology 101, Nr. 13 (08.06.2017): 5223–34. http://dx.doi.org/10.1007/s00253-017-8359-5.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
4

Faccio, G., S. Senkalla, L. Thöny-Meyer und M. Richter. „Enzymatic multi-functionalization of microparticles under aqueous neutral conditions“. RSC Advances 5, Nr. 29 (2015): 22319–25. http://dx.doi.org/10.1039/c5ra00669d.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
5

Kaur, Amandeep, J. N. Chakraborty und Kashyap Kumar Dubey. „Enzymatic Functionalization of Wool for Felting Shrink-Resistance“. Journal of Natural Fibers 13, Nr. 4 (03.07.2016): 437–50. http://dx.doi.org/10.1080/15440478.2015.1043686.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
6

Zhang, Lei, Wenshan Zhao, Hengzhen Chen und Yuanchen Cui. „Enzymatic synthesis of phenol polymer and its functionalization“. Journal of Molecular Catalysis B: Enzymatic 87 (März 2013): 30–36. http://dx.doi.org/10.1016/j.molcatb.2012.10.015.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
7

Lewis, Jared C., Pedro S. Coelho und Frances H. Arnold. „ChemInform Abstract: Enzymatic Functionalization of Carbon-Hydrogen Bonds“. ChemInform 42, Nr. 29 (27.06.2011): no. http://dx.doi.org/10.1002/chin.201129261.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
8

Ahmadi, Yasaman, Elisa De Llano und Ivan Barišić. „(Poly)cation-induced protection of conventional and wireframe DNA origami nanostructures“. Nanoscale 10, Nr. 16 (2018): 7494–504. http://dx.doi.org/10.1039/c7nr09461b.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
9

Guzmán-Mendoza, José Jesús, David Chávez-Flores, Silvia Lorena Montes-Fonseca, Carmen González-Horta, Erasmo Orrantia-Borunda und Blanca Sánchez-Ramírez. „A Novel Method for Carbon Nanotube Functionalization Using Immobilized Candida antarctica Lipase“. Nanomaterials 12, Nr. 9 (26.04.2022): 1465. http://dx.doi.org/10.3390/nano12091465.

Der volle Inhalt der Quelle
Annotation:
Carbon nanotubes (CNTs) have been proposed as nanovehicles for drug or antigen delivery since they can be functionalized with different biomolecules. For this purpose, different types of molecules have been chemically bonded to CNTs; however, this method has low efficiency and generates solvent waste. Candida antarctica lipase is an enzyme that, in an organic solvent, can bind a carboxylic to a hydroxyl group by esterase activity. The objective of this work was to functionalize purified CNTs with insulin as a protein model using an immobilized lipase of Candida antarctica to develop a sustainable functionalization method with high protein attachment. The functionalized CNTs were characterized by scanning electron microscope (SEM), Raman spectroscopy, Fourier-transform infrared spectroscopy (FTIR), thermogravimetric analysis (TGA), and sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS–PAGE). The enzymatic functionalization of insulin on the surface of the CNTs was found to have an efficiency of 21%, which is higher in conversion and greener than previously reported by the diimide-activated amidation method. These results suggest that enzymatic esterification is a convenient and efficient method for CNT functionalization with proteins. Moreover, this functionalization method can be used to enhance the cellular-specific release of proteins by lysosomal esterases.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
10

Guzmán-Mendoza, José Jesús, David Chávez-Flores, Silvia Lorena Montes-Fonseca, Carmen González-Horta, Erasmo Orrantia-Borunda und Blanca Sánchez-Ramírez. „A Novel Method for Carbon Nanotube Functionalization Using Immobilized Candida antarctica Lipase“. Nanomaterials 12, Nr. 9 (26.04.2022): 1465. http://dx.doi.org/10.3390/nano12091465.

Der volle Inhalt der Quelle
Annotation:
Carbon nanotubes (CNTs) have been proposed as nanovehicles for drug or antigen delivery since they can be functionalized with different biomolecules. For this purpose, different types of molecules have been chemically bonded to CNTs; however, this method has low efficiency and generates solvent waste. Candida antarctica lipase is an enzyme that, in an organic solvent, can bind a carboxylic to a hydroxyl group by esterase activity. The objective of this work was to functionalize purified CNTs with insulin as a protein model using an immobilized lipase of Candida antarctica to develop a sustainable functionalization method with high protein attachment. The functionalized CNTs were characterized by scanning electron microscope (SEM), Raman spectroscopy, Fourier-transform infrared spectroscopy (FTIR), thermogravimetric analysis (TGA), and sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS–PAGE). The enzymatic functionalization of insulin on the surface of the CNTs was found to have an efficiency of 21%, which is higher in conversion and greener than previously reported by the diimide-activated amidation method. These results suggest that enzymatic esterification is a convenient and efficient method for CNT functionalization with proteins. Moreover, this functionalization method can be used to enhance the cellular-specific release of proteins by lysosomal esterases.
APA, Harvard, Vancouver, ISO und andere Zitierweisen

Dissertationen zum Thema "Enzymatic functionalization"

1

Sen, Mustafa Yasin. „Green Polymer Chemistry: Functionalization of Polymers Using Enzymatic Catalysis“. University of Akron / OhioLINK, 2009. http://rave.ohiolink.edu/etdc/view?acc_num=akron1258422775.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
2

Liu, Tong. „Enzymatic Synthesis of Poly(lactic acid) Based Polyester Capable of Functionalization“. University of Akron / OhioLINK, 2015. http://rave.ohiolink.edu/etdc/view?acc_num=akron1430749638.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
3

Bicer, Isil. „Chemoenzymatic Functionalization Of Cyclic 1,2-diketones“. Master's thesis, METU, 2006. http://etd.lib.metu.edu.tr/upload/12607293/index.pdf.

Der volle Inhalt der Quelle
Annotation:
Chiral hydroxylated cyclopentane derivatives are important structural units in many biologically active compounds and are also important synthons for the asymmetric synthesis of natural products. Synthesis of these types of compounds in optically pure form found increased interest in pharmaceutical chemistry. For this purpose 5-acetoxy-3-methyl-2-methoxy-2-cyclopentene-1-one and 5-acetoxy-3-ethyl-2-methoxy-2-cyclopentene-1-one were acetoxylated using manganese (III) acetate at a&rsquo
positions. Enzyme catalyzed enantioselective hydrolysis of hydrolyzed acetoxy derivatives gives the corresponding hydroxylated diketones in optically pure form.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
4

Alvarez, Albarran Alejandra. „Modular Surface Functionalization of Polyisobutylene-based Biomaterials“. University of Akron / OhioLINK, 2014. http://rave.ohiolink.edu/etdc/view?acc_num=akron1405173637.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
5

Islam, Shohana Subrin Verfasser], Ulrich [Akademischer Betreuer] [Schwaneberg und Lothar [Akademischer Betreuer] Elling. „Enzymatic functionalization and degradation of natural and synthetic polymers / Shohana Subrin Islam ; Ulrich Schwaneberg, Lothar Elling“. Aachen : Universitätsbibliothek der RWTH Aachen, 2019. http://d-nb.info/1193181437/34.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
6

Islam, Shohana Subrin [Verfasser], Ulrich [Akademischer Betreuer] Schwaneberg und Lothar [Akademischer Betreuer] Elling. „Enzymatic functionalization and degradation of natural and synthetic polymers / Shohana Subrin Islam ; Ulrich Schwaneberg, Lothar Elling“. Aachen : Universitätsbibliothek der RWTH Aachen, 2019. http://d-nb.info/1193181437/34.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
7

Longo, Johan. „Design of biomechanocatalytic surfaces : modulations of enzymatic activity through macromolecular conformational changes“. Thesis, Strasbourg, 2014. http://www.theses.fr/2014STRAE022/document.

Der volle Inhalt der Quelle
Annotation:
Depuis plusieurs années, une nouvelle génération de matériaux appelés “matériaux intelligents” et définis par leur capacité d’adaptation à leur environnement, est intensément développée. Des systèmes sensibles à différents stimuli tels que le pH, la lumière, ou encore une force mécanique, impliquée dans un grand nombre de processus naturels, comme l’adhésion et la prolifération cellulaire, ont été rapportés. Ce travail de thèse a ainsi été dédié au développement de matériaux mécano-sensibles. Plus précisément de matériaux transformant une contrainte mécanique en un signal chimique, en mimant le processus physique utilisé par la nature, à savoir des changements conformationnels de protéines. Nous avons donc cherché à atteindre ce but en greffant covalemment des protéines ou des enzymes sur un substrat élastomère. Etirer le substrat devant induire des modifications de structure des protéines, conduisant ainsi à des modulations de leurs propriétés
Since many years, a new generation of materials called « smart materials » and defined by their capacity to adapt to their environment is intensively developed. Systems sensitive to different stimuli such as pH, light or ionic strength have been reported. One of these stimuli can also be a mechanical force which is involved in many reactions in nature such as, cells adhesion and proliferation, tissues growing or even plants developments. The aim of my thesis was dedicated to the elaboration of mechano-responsive materials. More precisely, materials that transform a stretching constraint into a chemical signal by mimicking the physical processes used by nature, namely protein conformational changes. We planned to achieve this goal by covalently grafting proteins or enzymes onto a stretchable substrate or incorporating them into cross-linked polymer networks. Stretching these materials should induce protein conformational changes leading to modifications of their properties
APA, Harvard, Vancouver, ISO und andere Zitierweisen
8

Lorenzen, Jan [Verfasser], Thomas [Akademischer Betreuer] Brück, Thomas [Gutachter] Brück, Thomas [Gutachter] Fässler, Uwe [Gutachter] Bornscheuer und Wolfgang [Gutachter] Eisenreich. „Enzymatic functionalization of bio based fatty acids and algae based triglycerides / Jan Lorenzen ; Gutachter: Thomas Brück, Thomas Fässler, Uwe Bornscheuer, Wolfgang Eisenreich ; Betreuer: Thomas Brück“. München : Universitätsbibliothek der TU München, 2019. http://d-nb.info/1201819997/34.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
9

Maccow, Awilda. „A chemo-enzymatic approach to expand the chemical space of cellulose-derived materials : Application to eco-friendly dyeing of cellulosic fibers“. Electronic Thesis or Diss., Toulouse, INSA, 2022. http://www.theses.fr/2022ISAT0054.

Der volle Inhalt der Quelle
Annotation:
L'extension de l'espace moléculaire chimique accessible à partir de la biomasse végétale par des méthodes douces et propres est un sujet d'actualité qui stimule la communauté scientifique afin de développer des produits biosourcés à faible impact environnemental et d'élargir le champ d'exploitation de la biomasse. La fonctionnalisation de la cellulose, le polysaccharide le plus abondant sur la planète, et/ou des cello-oligosaccharides telle que décrite dans cette thèse s'inscrit dans cette démarche. Notre objectif était de développer une méthode chimio-enzymatique impliquant l'action d'une laccase assistée par un médiateur pour oxyder des cello-oligosaccharides ou des fibres cellulosiques, suivie d'une amination réductrice pour greffer des composés aminés sur le matériau cellulosique. Dans ce but, nous avons d'abord démontré l'oxydation du cellobiose et du méthyl cellobiose en utilisant la laccase de Trametes versicolor et le TEMPO comme médiateur. Les conditions d'oxydation ont été optimisées avec le méthyl cellobiose et appliquées à un mélange de cello-oligosaccharides et au cellopentaose. En utilisant l'analyse LC/MS, nous avons montré qu'une large gamme de composés oxydés est obtenue et que la méthode est efficace pour produire des cello-oligosaccharides acides potentiellement intéressants pour les domaines biomédical et nutraceutique. Ensuite, nous avons montré que la réactivité du cellopentaose oxydé avec deux molécules aminées, la p-toluidine et la rhodamine 123 (un colorant aminé), permettait la liaison du composé aminé aux oligosaccharides. À l'aide des techniques LC/MS et MS/MS, nous avons mis en évidence la présence d'une liaison amine forte et covalente entre les colorants et le cellopentaose, élargissant ainsi l'espace chimique accessible par ce procédé hybride. Après avoir réalisé cette preuve de concept, nous avons tenté la teinture de fils de coton. Les fibres cellulosiques sont l'un des principaux matériaux textiles biosourcés et biodégradables. Cependant, le traitement chimique des textiles et notamment les méthodes chimiques utilisées pour fixer les colorants de manière covalente sont extrêmement polluants et nocifs pour la santé. Proposer des alternatives plus respectueuses de l'environnement est un défi mais d'un intérêt primordial pour une entreprise comme PILI, impliquée dans le projet de thèse, qui développe des colorants naturels en utilisant la biologie de synthèse. Ainsi, le potentiel du procédé hybride à deux étapes a été utilisé pour greffer avec succès la p-toluidine, la rhodamine 123 et le rouge acide 33 sur des fils de coton. La liaison covalente établie entre ces colorants et la fibre de coton a été prouvée pour la première fois. De plus, une bonne homogénéité et une bonne résistance au lavage ont été observées pour la teinture avec l'acid red 33, démontrant la robustesse et l'applicabilité de l'approche en situation réelle. Ces résultats originaux ont été brevetés. En testant d'autres colorants aminés, nous avons également montré que la solubilité, la réactivité et la structure du colorant aminé sont des paramètres importants à prendre en compte pour l'optimisation de la teinture, ce qui ouvre la voie à la synthèse à façon de nouveaux colorants aminés adaptés à ce procédé hybride prometteur
The extension of the chemical molecular space accessible from plant biomass by soft and clean methods is a timely topic that stimulates the scientific community in order to develop biobased products with low environmental impact and to widen the field of biomass exploitation. The functionalization of cellulose, the most abundant polysaccharide on the planet, and/or cello-oligosaccharides as described in this thesis is part of this approach. Our objective was to develop a chemo-enzymatic method involving the action of a mediator-assisted laccase to oxidize cello-oligosaccharides or cellulosic fibers, followed by reductive amination to graft amino compounds onto the cellulosic material. To this end, we first demonstrated the oxidation of cellobiose and methyl cellobiose using the laccase from Trametes versicolor and TEMPO as a mediator. Oxidation conditions were optimized with methyl cellobiose and applied to a cello-oligosaccharide mixture and cellopentaose. Using LC/MS analysis, we showed that a wide range of oxidized compounds is obtained and that the method is effective in producing acidic cello-oligosaccharides potentially of interest for the biomedical and nutraceutical fields. Then, we showed that the reactivity of oxidized cellopentaose with two aminated molecules, p-toluidine and rhodamine 123 (an aminated dye), allowed the binding of the amino compound to the oligosaccharides. Using LC/ MS and MS/MS techniques, we provided evidence for the presence of a strong, covalent amine bond between the dyes and cellopentaose, thus enlarging the chemical space accessible through this hybrid process. After completed this proof of concept, we attempted the dyeing of cotton threads. Cellulosic fibers are one of the main biosourced and biodegradable textile materials. However, chemical processing of textiles and especially the chemical methods used to covalently fix dyes are extremely polluting and harmful to health. Providing more eco-friendly alternatives is a challenge but of prime interest for a company like PILI, which was involved in the thesis project and is developing natural dyes using synthetic biology. Thus, the potential of the two-pot/two-step hybrid process was used to successfully graft p-Toluidine, rhodamine 123 and Acid Red 33 onto cotton thread. The covalent bond established between these dyes and the cotton fiber was proven for the first time. In addition, good homogeneity and wash-fastness were observed for acid Red 33 dyeing, demonstrating the robustness and applicability of the approach in real life. These original results have been patented. By testing other amino dyes, we also showed that the solubility, reactivity and structure of the aminated dye are important parameters to be addressed for dyeing optimization, which opens the way to the custom synthesis of new amino dyes suitable for this promising hybrid process
APA, Harvard, Vancouver, ISO und andere Zitierweisen
10

Nesterenko, Alla. „Etude et fonctionnalisation de protéines végétales en vue de leur application en microencapsulation“. Thesis, Toulouse, INPT, 2012. http://www.theses.fr/2012INPT0148/document.

Der volle Inhalt der Quelle
Annotation:
Les protéines extraites des végétaux sont des matériaux relativement peu coûteux, non toxiques, biocompatibles et biodégradables. Elles représentent une bonne alternative aux protéines d’origine animale et aux polymères dérivés du pétrole. Dans le cadre de cette étude, les protéines extraites de graines de soja et de tournesol ont été utilisées en tant que matériaux enrobants pour la microencapsulation de la matière active hydrophobe (α-tocophérol) ou hydrophile (acide ascorbique) par le procédé d’atomisation. Les protéines de soja sont largement utilisées dans les applications alimentaires et non-alimentaires, notamment en microencapsulation. Elles sont donc étudiées dans ce travail comme matériau enrobant de référence. Les protéines de tournesol n’ont quant à elles pas d’application industrielle concrète, si ce n’est sous la forme de tourteaux dans l’alimentation animale. C’est pourquoi il nous semble pertinent de trouver des nouvelles voies de valorisation pour ce coproduit d’origine agricole. Plusieurs modifications des protéines, telles que l’hydrolyse enzymatique, l’acylation, la réticulation enzymatique et la cationisation ont été étudiées dans le but d’améliorer les propriétés encapsulantes du matériau enrobant. Dans le contexte de la chimie verte, toutes les modifications ont été effectuées sans utilisation de solvants organiques ni de catalyseurs chimiques. L’influence des modifications chimiques et enzymatiques des protéines, et des paramètres du procédé (pression d’homogénéisation, ratio matériau enrobant/matière active et concentration en protéines) sur les différentes caractéristiques des préparations liquides et des microparticules (viscosité, taille des gouttelettes dans le cas des émulsions, morphologie et taille des microparticules), ainsi que sur les paramètres liés au procédé d’atomisation (rendement et efficacité de microencapsulation) a été particulièrement étudiée au cours de ce travail. Les résultats obtenus confirment que l’extrait protéique de tournesol est tout à fait pertinent comme matériau enrobant et permet d’obtenir des efficacités de microencapsulation significativement plus élevées par rapport à celles obtenues avec l’extrait protéique de soja
Proteins extracted from vegetables are relatively low-cost, non-toxic, biocompatible and biodegradable raw materials. They represent a good alternative to animal-based proteins and petroleum-extracted polymers. In this study, proteins derived from soybean and sunflower seeds were used as wall materials for microencapsulation of hydrophobic (-tocopherol) or hydrophilic (ascorbic acid) active material by spray-drying technique. Soybean proteins are widely used in food and non-food applications, especially in microencapsulation. They were studied in this work as wall material of reference. Sunflower proteins are not actually used in industrial application, but only in the form of oil-cake for animal feeding. That’s why new ways of valorization of this agricultural by-product should be investigated. Several proteins’ modifications such as enzymatic hydrolysis, acylation, cross-linking and cationization were studied in order to improve encapsulating properties of wall material. In the context of green chemistry, all the modifications and preparations were performed without use of organic solvents and chemical catalysts. The effect of protein chemical and enzymatic modifications, and process parameters (homogenization pressure, wall/core ratio and protein concentration) on different characteristics of liquid preparations and microparticles (viscosity, emulsion droplet size, microparticle size and morphology) and on parameters related to the spray-drying process (yield and efficiency of microencapsulation) was particularly investigated in this study. The obtained results confirmed that sunflower proteins are quite suitable as encapsulating agent and provide the microencapsulation efficiencies significantly higher compared to those obtained with soy proteins
APA, Harvard, Vancouver, ISO und andere Zitierweisen

Buchteile zum Thema "Enzymatic functionalization"

1

López-Cortés, N., A. Beloqui, A. Ghazi und M. Ferrer. „Enzymatic Functionalization of Hydrocarbon-like Molecules“. In Handbook of Hydrocarbon and Lipid Microbiology, 2841–58. Berlin, Heidelberg: Springer Berlin Heidelberg, 2010. http://dx.doi.org/10.1007/978-3-540-77587-4_211.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
2

Waldmann, H., A. Heuser, P. Braun, M. Schultz und H. Kunz. „New Enzymatic Methods for the Selective Functionalization of Carbohydrate Derivatives“. In Microbial Reagents in Organic Synthesis, 113–22. Dordrecht: Springer Netherlands, 1992. http://dx.doi.org/10.1007/978-94-011-2444-7_9.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
3

Puskas, Judit E., und Mustafa Y. Sen. „Green Polymer Chemistry: Enzymatic Functionalization of Liquid Polymers in Bulk“. In ACS Symposium Series, 417–24. Washington, DC: American Chemical Society, 2010. http://dx.doi.org/10.1021/bk-2010-1043.ch028.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
4

Puskas, Judit E., Kwang Su Seo, Marcela Castaño, Madalis Casiano und Chrys Wesdemiotis. „Green Polymer Chemistry: Enzymatic Functionalization of Poly(ethylene glycol)s Under Solventless Conditions“. In Green Polymer Chemistry: Biocatalysis and Materials II, 81–94. Washington, DC: American Chemical Society, 2013. http://dx.doi.org/10.1021/bk-2013-1144.ch007.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
5

Puton, Bruna Maria Saorin, Julia Lisboa Bernardi, Andressa Franco Denti, Luciana Dornelles Venquiaruto, Victor de Aguiar Pedott, Marcelo Luis Mignoni, Natalia Paroul und Rogério Marcos Dallago. „Immobilization of enzymatic extract in polyester fiber emulsified with polyurethane resin“. In A LOOK AT DEVELOPMENT. Seven Editora, 2023. http://dx.doi.org/10.56238/alookdevelopv1-163.

Der volle Inhalt der Quelle
Annotation:
The objective of this work was to evaluate the immobilization of lipolytic and pectinolytic enzymatic extracts in a Polyester Fiber Emulsified with Polyurethane Resin (FPERP) support without and with functionalization with glutaraldehyde. In the first method, the support was emulsified with the enzymatic extract and then the shape of the immobilized was determined before the completion of the polymerization, and could be flat, coiled or double-layered. In the second method, the functionalization of PFRP with glutaraldehyde was performed before immobilization. The esterification activity and operational stability of lipolytic and pectinolytic immobilizes were determined by the synthesis of ethyl oleate and hydrolysis of citrus pectin, respectively. The immobilization of the lipolytic extract in support of PFRP functionalized with 50 and 25% glutaraldehyde resulted in immobilized patients with activity of 28.05 and 15.52 U/g, respectively. On the other hand, the immobilized without functionalization presented higher activity in the form of a double layer (132.17 U/g). The immobilization of the pectinolytic extract resulted in immobilizations with exo-polygalacturonase (exo-PG) and pectinmethylesterase (PME) activity of 1.78 and 12.34 U/g, respectively, for the double-layer immobilized. Regarding operational stability, the immobilized did not present satisfactory values, possibly due to the inefficiency of the polyurethane resin as a support for enzymatic immobilization on the fiber.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
6

Derr, Ludmilla. „4. Colloidal particles, their surface functionalization and covalent enzyme mobilization“. In Interactions between enzymes and oxide colloidal particles and their influence on enzymatic activity, 27–33. VDI Verlag, 2016. http://dx.doi.org/10.51202/9783185760051-27.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
7

„Carbon Materials for Gas and Bio-Sensing Applications Beyond Graphene“. In Materials Research Foundations, 39–68. Materials Research Forum LLC, 2021. http://dx.doi.org/10.21741/9781644901175-2.

Der volle Inhalt der Quelle
Annotation:
The development of technology in the area of material science and nanotechnology is a worldwide concern to researchers for generating a substance by synthesizing nanoparticles with required properties. Carbonaceous materials have gained numerous interests because of their direct electron or charge transfer capacity between active site reception and functionalized nanoparticles without involvement of a mediator. However, among all existing materials, carbon nanotubes have been proven to elite beyond graphene. Carbon nanotubes (CNTs) possess extraordinary electrochemical biosensing and gas sensing due to their specific properties. This encourages researchers to gain new ideas about construction and development of immunosensors, genosensors, enzymatic biosensors and specific gas sensors based on above nanoparticles. Qualification of working electrode via incorporation of two or more of these nanoparticles gives enhanced stability, better sensitivity and functionality to the sensor. This chapter reviews basic information about sensors, their types, functionalization, fabrication mechanisms and applications for future prospective.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
8

Brumer, H. „Enzymatic functionalization of cellulosic fibres for textile and other applications: xyloglucan as a molecular anchor“. In Advances in Textile Biotechnology, 266–87. Elsevier, 2010. http://dx.doi.org/10.1533/9780857090232.2.266.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
9

Bakhtchadjian, Robert. „Introductory Notes on Mechanisms in Oxygen Atom Transfer Reactions of Transition Metal Complexes“. In Oxygen Atom Transfer Reactions, 1–38. BENTHAM SCIENCE PUBLISHERS, 2023. http://dx.doi.org/10.2174/9789815050929123010005.

Der volle Inhalt der Quelle
Annotation:
Investigations of the mechanisms of oxygen atom transfer reactions of transition metal organometallic complexes are mainly related to their abundance in chemical syntheses and biological oxidation processes. They are important stages in the catalytic and enzymatic oxidation cycles of substrates, as well as in the catalytic oxidation of water. These brief notes on the mechanisms of oxygen atom transfer reactions involve certain fundamentals (geometric and electronic structures, spin states and reactivity of oxo.complexes), as well as some specific peculiarities of the oxo-atom transfer reactions of transition metal complexes (hydrogen atom abstraction and oxygen rebound mechanisms, intra- and intermolecular types of oxo-atom transfer, multistate reactivity). This chapter introduces readers to the categorization and place of oxo-atom transfer reactions in the classification of catalytic oxidation processes in the context of general problems of the mechanisms in this area. The chapter also provides readers with certain data on the activation of dioxygen and the functionalization of C-H bonds in oxidation processes via the oxo-atom transfer reactions of transition metal complexes. The role of the two and multiple spin states reactivity in the mechanisms of these reactions has also been discussed. This chapter is written mainly for non-specialist readers in this area and serves as a general introduction to the next chapters of this collection of works.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
Wir bieten Rabatte auf alle Premium-Pläne für Autoren, deren Werke in thematische Literatursammlungen aufgenommen wurden. Kontaktieren Sie uns, um einen einzigartigen Promo-Code zu erhalten!

Zur Bibliographie