Um die anderen Arten von Veröffentlichungen zu diesem Thema anzuzeigen, folgen Sie diesem Link: Environmental geochemistry.

Zeitschriftenartikel zum Thema „Environmental geochemistry“

Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an

Wählen Sie eine Art der Quelle aus:

Machen Sie sich mit Top-50 Zeitschriftenartikel für die Forschung zum Thema "Environmental geochemistry" bekannt.

Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.

Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.

Sehen Sie die Zeitschriftenartikel für verschiedene Spezialgebieten durch und erstellen Sie Ihre Bibliographie auf korrekte Weise.

1

Fuge, Ron. „Environmental Geochemistry“. Applied Geochemistry 17, Nr. 8 (August 2002): 959. http://dx.doi.org/10.1016/s0883-2927(02)00094-x.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
2

Martin, M. H., und I. Thornton. „Applied Environmental Geochemistry.“ Journal of Applied Ecology 22, Nr. 3 (Dezember 1985): 1028. http://dx.doi.org/10.2307/2403267.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
3

O'Day, Peggy A. „Molecular environmental geochemistry“. Reviews of Geophysics 37, Nr. 2 (Mai 1999): 249–74. http://dx.doi.org/10.1029/1998rg900003.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
4

ELLIOTT, HERSCHEL A. „Applied Environmental Geochemistry“. Soil Science 140, Nr. 4 (Oktober 1985): 307. http://dx.doi.org/10.1097/00010694-198510000-00015.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
5

Hamilton, E. I. „Applied environmental geochemistry“. Science of The Total Environment 43, Nr. 1-2 (Mai 1985): 190–91. http://dx.doi.org/10.1016/0048-9697(85)90044-0.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
6

Bowman, Robert S. „Aqueous Environmental Geochemistry“. Eos, Transactions American Geophysical Union 78, Nr. 50 (1997): 586. http://dx.doi.org/10.1029/97eo00355.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
7

POORTER, R. „Applied environmental geochemistry“. Earth-Science Reviews 24, Nr. 3 (September 1987): 220–22. http://dx.doi.org/10.1016/0012-8252(87)90028-6.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
8

Runnells, Donald D. „Applied environmental geochemistry“. Journal of Geochemical Exploration 25, Nr. 3 (Mai 1986): 404–5. http://dx.doi.org/10.1016/0375-6742(86)90091-9.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
9

DEMETRIADES, A. „Applied geochemistry in the twenty-first century: mineral exploration and environmental surveys“. Bulletin of the Geological Society of Greece 34, Nr. 3 (01.01.2001): 1131. http://dx.doi.org/10.12681/bgsg.17173.

Der volle Inhalt der Quelle
Annotation:
Applied (exploration and environmental) geochemistry in the twentieth century is briefly reviewed, and its future developments in the twenty-first century are envisaged in the light of advances in analytical instruments (laboratory and field) and computer technology. It is concluded that applied geochemical methods must be used by well-trained applied geochemists, and the potential for future developments is limited only by their ingenuity.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
10

Hostettler, Frances, und Keith Kvenvolden. „Alkytcyclohexanes in Environmental Geochemistry“. Environmental Forensics 3, Nr. 3 (01.01.2002): 293–301. http://dx.doi.org/10.1080/713848390.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
11

Stillings, Lisa L. „Principles of Environmental Geochemistry“. Ground Water 44, Nr. 5 (31.08.2006): 628. http://dx.doi.org/10.1111/j.1745-6584.2006.00250.x.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
12

Hostettler, Frances D., und Keith A. Kvenvolden. „Alkytcyclohexanes in Environmental Geochemistry“. Environmental Forensics 3, Nr. 3-4 (01.01.2002): 293–301. http://dx.doi.org/10.1080/15275920216271.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
13

EMMERICH, WILLIAM E. „Environmental Geochemistry and Health“. Soil Science 140, Nr. 6 (Dezember 1985): 471. http://dx.doi.org/10.1097/00010694-198512000-00014.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
14

Huang, P. M. „Environmental geochemistry and health“. Earth-Science Reviews 42, Nr. 4 (November 1997): 277–78. http://dx.doi.org/10.1016/s0012-8252(97)81865-x.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
15

Ashby, Kenneth. „Environmental geochemistry and health“. Land Use Policy 3, Nr. 1 (Januar 1986): 68–69. http://dx.doi.org/10.1016/0264-8377(86)90013-x.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
16

Meena, Amanda H., und Yuji Arai. „Environmental geochemistry of technetium“. Environmental Chemistry Letters 15, Nr. 2 (07.02.2017): 241–63. http://dx.doi.org/10.1007/s10311-017-0605-7.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
17

Hostettler, F. „Alkylcyclohexanes in Environmental Geochemistry“. Environmental Forensics 3, Nr. 3-4 (September 2002): 293–301. http://dx.doi.org/10.1006/enfo.2002.0100.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
18

Andrews, J. N. „Handbook of environmental isotope geochemistry“. Physics of the Earth and Planetary Interiors 56, Nr. 3-4 (September 1989): 409–11. http://dx.doi.org/10.1016/0031-9201(89)90177-5.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
19

Schuiling, R. D. „Engineering aspects of environmental geochemistry“. Journal of Geochemical Exploration 41, Nr. 1-2 (August 1991): 59–64. http://dx.doi.org/10.1016/0375-6742(91)90074-5.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
20

Seal, Robert R., und D. Kirk Nordstrom. „Applied Geochemistry Special Issue on Environmental geochemistry of modern mining“. Applied Geochemistry 57 (Juni 2015): 1–2. http://dx.doi.org/10.1016/j.apgeochem.2015.04.019.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
21

Argyraki, A. „ENVIRONMENTAL GEOCHEMISTRY AND SUSTAINABLE DEVELOPMENT: CASE STUDIES FROM GREECE“. Bulletin of the Geological Society of Greece 50, Nr. 1 (27.07.2017): 191. http://dx.doi.org/10.12681/bgsg.11719.

Der volle Inhalt der Quelle
Annotation:
The contribution of environmental geochemistry to sustainable development is discussed through the presentation of different case studies from Greece. The aim is to demonstrate the impact of geochemistry to a variety of societal and economic areas such as the sustainable exploitation of natural resources, the assessment of environmental problems within cities and the sustainable remediation of contaminated land. Several examples of completed and ongoing research are provided including a pre-mining survey in Skouries, Chalkidiki, a geochemical background study in an area of serpentine, agricultural soil in Atalanti, the urban soil geochemistry of Athens and the use of natural minerals as amendments for the remediation of contaminated land. The paper concludes with some facts on opportunities and obstacles to development in the field of environmental geochemistry in Greece under the current economic crisis conditions.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
22

CZERNUSZEWICZ, ROMAN S. „Geochemistry of porphyrins: biological, industrial and environmental aspects“. Journal of Porphyrins and Phthalocyanines 04, Nr. 04 (Juni 2000): 426–31. http://dx.doi.org/10.1002/(sici)1099-1409(200006/07)4:4<426::aid-jpp248>3.0.co;2-1.

Der volle Inhalt der Quelle
Annotation:
The existence of metalloporphyrins in geological materials was established by Alfred Treibs in the 1930s. This discovery provided definitive evidence that organic matter in fossil fuels is largely of biological origin and laid the foundation for the modern science of porphyrin geochemistry. This overview covers to some degree biological, industrial, and environmental topics in the geochemistry of nickel and vanadyl porphyrins in fossil fuels, principally petroleum.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
23

Valsami-Jones, E., D. A. Polya und K. Hudson-Edwards. „Environmental mineralogy, geochemistry and human health“. Mineralogical Magazine 69, Nr. 5 (Oktober 2005): 615–20. http://dx.doi.org/10.1180/s0026461x00045473.

Der volle Inhalt der Quelle
Annotation:
This issue of Mineralogical Magazine is the 5th in a loosely defined series of special thematic issues (or part issues), deriving from conferences organized by the Mineralogical Society. The associated conference was entitled ‘Environmental Mineralogy, Geochemistry and Human Health’ and took place in January 2005, in Bath. A common thread to all these Mineralogical Society conferences has been the role of mineralogy in applied science and technology and particularly in environmental science, focussing on the multidisciplinarity of modern mineralogy; the conferences (and special issues) have been particularly successful in bringing along scientists from outside traditional Mineralogy/Earth Sciences. Notably, the series comes at a time when the popularity of Mineralogy/Geology, but also science in general, is low, and many, particularly young, scientists are seeking to place themselves in a better position in the eye of the public and the media, and often also to find new focus for their research. A primary ambition for the series is thus to demonstrate Mineralogy's extensive outreach and has so far succeeded in giving the scientific community a sense of the wider role mineralogists can play.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
24

Plant, Jane, David Smith, Barry Smith und Lorraine Williams. „Environmental geochemistry at the global scale“. Applied Geochemistry 16, Nr. 11-12 (August 2001): 1291–308. http://dx.doi.org/10.1016/s0883-2927(01)00036-1.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
25

Selinus, Olle. „Large-scale monitoring in environmental geochemistry“. Applied Geochemistry 11, Nr. 1-2 (Januar 1996): 251–60. http://dx.doi.org/10.1016/0883-2927(95)00085-2.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
26

PLANT, JANE, DAVID SMITH, BARRY SMITH und LORRAINE WILLIAMS. „Environmental geochemistry at the global scale“. Journal of the Geological Society 157, Nr. 4 (Juli 2000): 837–49. http://dx.doi.org/10.1144/jgs.157.4.837.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
27

Wong, Coby S. C., Xiangdong Li und Iain Thornton. „Urban environmental geochemistry of trace metals“. Environmental Pollution 142, Nr. 1 (Juli 2006): 1–16. http://dx.doi.org/10.1016/j.envpol.2005.09.004.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
28

Painter, Scott, Eion M. Cameron, Rod Allan und Jeremy Rouse. „Reconnaissance geochemistry and its environmental relevance“. Journal of Geochemical Exploration 51, Nr. 3 (September 1994): 213–46. http://dx.doi.org/10.1016/0375-6742(94)90008-6.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
29

Ruggieri, F., J. Saavedra, J. L. Fernandez-Turiel, D. Gimeno und M. Garcia-Valles. „Environmental geochemistry of ancient volcanic ashes“. Journal of Hazardous Materials 183, Nr. 1-3 (November 2010): 353–65. http://dx.doi.org/10.1016/j.jhazmat.2010.07.032.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
30

Britt, Allison F., Raymond E. Smith und David J. Gray. „Element mobilities and the Australian regolith - a mineral exploration perspective“. Marine and Freshwater Research 52, Nr. 1 (2001): 25. http://dx.doi.org/10.1071/mf00054.

Der volle Inhalt der Quelle
Annotation:
Much of the Australian regolith ranges from Palaeogene to Late Cretaceous in age or even older, contrasting with the relatively young landscapes of the Northern Hemisphere. Hence, many imported geochemical exploration methods are unsuitable for Australian environments; this has led to successful homegrown innovation. Exploration geochemistry seeks to track geochemical anomalies arising from concealed ore deposits to their source. Much is known about element associations for different types of ore deposits and about observed patterns of dispersion. Element mobility in a range of Western Australian environments is discussed, drawing on field examples from the Mt Percy and Boddington gold mines and the Yandal greenstone belt, with reference to the effect of modern and past weathering regimes and the influence of groundwater on element mobility. Soil biota and vegetation affect Au mobility in the regolith, but specific processes, scale and environmental factors are unknown. Possible future synergies between biogeochemical or environmental research and regolith exploration geochemistry include determining the fundamental biogeochemical processes involved in the formation of geochemical anomalies as well as environmental concerns such as regolith aspects of land degradation. Exploration geochemists must study the work of biogeochemical and environmental researchers, and vice versa. There should also be collaborative research with regolith scientists and industry.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
31

Thornton, Iain. „Research in Applied Environmental Geochemistry, with particular reference to Geochemistry and Health“. Geochemistry: Exploration, Environment, Analysis 10, Nr. 3 (August 2010): 317–29. http://dx.doi.org/10.1144/1467-7873/09-241.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
32

Biddle, Dean Leslie. „Ion Activity and Speciation in Environmental Geochemistry“. Journal of Geological Education 43, Nr. 5 (November 1995): 507–10. http://dx.doi.org/10.5408/0022-1368-43.5.507.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
33

Koretsky, Carla M., Heather L. Petcovic und Katherine L. Rowbotham. „Teaching Environmental Geochemistry: An Authentic Inquiry Approach“. Journal of Geoscience Education 60, Nr. 4 (06.11.2012): 311–24. http://dx.doi.org/10.5408/11-273.1.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
34

Asami, Teruo. „Problems on Environmental Geochemistry of Harmful Metals“. TRENDS IN THE SCIENCES 3, Nr. 3 (1998): 93–94. http://dx.doi.org/10.5363/tits.3.3_93.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
35

Bowell, R. J., C. N. Alpers, H. E. Jamieson, D. K. Nordstrom und J. Majzlan. „The Environmental Geochemistry of Arsenic -- An Overview --“. Reviews in Mineralogy and Geochemistry 79, Nr. 1 (01.01.2014): 1–16. http://dx.doi.org/10.2138/rmg.2014.79.1.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
36

Grainger, C. R. „Geochemistry and Environmental Health: Radon in Cornwall“. Journal of the Royal Society of Health 108, Nr. 2 (April 1988): 57–58. http://dx.doi.org/10.1177/146642408810800208.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
37

Grainger, C. R. „Geochemistry and Environmental Health: Uranium in Cornwall“. Journal of the Royal Society of Health 114, Nr. 1 (Februar 1994): 11–13. http://dx.doi.org/10.1177/146642409411400102.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
38

Qi, Cuicui, Guijian Liu, Chen-Lin Chou und Liugen Zheng. „Environmental geochemistry of antimony in Chinese coals“. Science of The Total Environment 389, Nr. 2-3 (Januar 2008): 225–34. http://dx.doi.org/10.1016/j.scitotenv.2007.09.007.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
39

Sverdrup, Harald. „Geochemistry, the key to understanding environmental chemistry“. Science of The Total Environment 183, Nr. 1-2 (April 1996): 67–87. http://dx.doi.org/10.1016/0048-9697(95)04978-9.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
40

Hudson-Edwards, K. A. „Sulfate Minerals: Crystallography, Geochemistry, and Environmental Significance“. Journal of Geochemical Exploration 73, Nr. 1 (September 2001): 57–59. http://dx.doi.org/10.1016/s0375-6742(01)00170-4.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
41

Pál-Molnár, Elemér, und Gábor Bozsó. „Complex environmental geochemistry of Saline lake sediments“. Cereal Research Communications 35, Nr. 2 (Juni 2007): 889–92. http://dx.doi.org/10.1556/crc.35.2007.2.181.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
42

Plumlee, Geoffrey S. „Environmental geochemistry in disaster response and planning“. Chinese Journal of Geochemistry 25, S1 (März 2006): 75–76. http://dx.doi.org/10.1007/bf02839880.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
43

Gallagher, Vincent, Eric C. Grunsky, Mairéad M. Fitzsimons, Margaret A. Browne, Sophie Lilburn und James Symons. „Tellus regional stream water geochemistry: environmental and mineral exploration applications“. Geochemistry: Exploration, Environment, Analysis 22, Nr. 1 (06.01.2022): geochem2021–050. http://dx.doi.org/10.1144/geochem2021-050.

Der volle Inhalt der Quelle
Annotation:
Regional stream water geochemistry acquired as part of the Tellus programme in Ireland has been analysed to assess its potential for application to environmental assessment and mineral exploration. Interpolated geochemical maps and multivariate statistical analysis, including principal component analysis and random forest classification, demonstrate broad geogenic control of stream water chemistry, with both bedrock and subsoil contributing to the patterns observed. Surface water regulations set Environmental Quality Standard values for individual Priority Substances and Specific Pollutants that may depend on background concentrations and/or water hardness. The high resolution of Tellus stream water data and their location on low-order streams have allowed estimation of background concentrations and water hardness in the survey area, with significant implications for water monitoring programmes. Anthropogenic inputs to stream water in the survey area come mainly from agricultural sources and Tellus data suggest few catchments are unaffected. Comparison of Tellus stream water geochemistry with stream sediment and topsoil geochemistry suggest that stream water geochemistry has strong potential for use in mineral exploration, with the same base metal and gold pathfinder anomalies apparent in all three data sets. Cluster analysis indicates that base metals in stream water are associated with organic matter but statistical analysis may be employed to distinguish mineralization-related signatures.Supplementary material: Comparison of cation/anion associations using Piper plots and principal component analysis is available at https://doi.org/10.6084/m9.figshare.c.5683094Thematic collection: This article is part of the Hydrochemistry related to exploration and environmental issues collection available at: https://www.lyellcollection.org/cc/hydrochemistry-related-to-exploration-and-environmental-issues
APA, Harvard, Vancouver, ISO und andere Zitierweisen
44

Li, Hui. „Geochemistry and Petrology: Collaborative Roles in Resource Exploration and Environmental Research“. Innovation in Science and Technology 2, Nr. 5 (September 2023): 33–37. http://dx.doi.org/10.56397/ist.2023.09.04.

Der volle Inhalt der Quelle
Annotation:
Geochemistry and petrology, as distinct yet interrelated fields within geology, play pivotal roles in understanding Earth’s composition, processes, and history. This paper explores the collaborative synergy between these disciplines and their significance in resource exploration and environmental research. It delves into their fundamental principles, applications, and emerging trends, highlighting successful interdisciplinary projects. Despite communication challenges and funding limitations, the future promises exciting opportunities for innovation and discovery through continued collaboration. As we address pressing global challenges, the partnership between geochemistry and petrology remains vital for a sustainable and resilient future.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
45

Shi, Long Qing, Dao Kun Ni und Jian Guang Cheng. „The Study on Establishing the Baseline Mode of Coal Mine Area Soil Heavy Metal Pollution“. Applied Mechanics and Materials 229-231 (November 2012): 2712–15. http://dx.doi.org/10.4028/www.scientific.net/amm.229-231.2712.

Der volle Inhalt der Quelle
Annotation:
The earth's crust Cluck value, the shale abundance value, the sandstone abundance value and so on may become in the weight earth's crust in the different land sector and the rock type the element centralism dispersible standard, becomes the more general geochemistry reference baseline, but uses the above baseline the shortcoming not to consider the natural geochemistry change. When specific area, under the specific geological background conducts the environment geochemistry research, uses the above geochemistry reference baseline the limitation to be more obvious. On the contrary, the environment geochemistry baseline represents in the humanity moves disturbs the local some place prompt survey the element density, is in the research or in monitor plan some specific time some medium the element density, usually is not in the true sense background. Therefore uses the science reasonable method determination soil environment geochemistry baseline, by determined the chemical element nature distribution the spatial variation, is understood the surface environmental pollution and the worsened degree, forecast and monitors the whole world environmental variation the foundation. Therefore, carries out the geochemistry baseline research is an extremely urgent duty. This article will use the statistical method to establish in the Yanzhou mining area surface layer soil heavy metal element As, Cd, Co, Cr, Cu, Hg, Mn, Ni, Pb, and Zn environment geochemistry baseline.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
46

Doherty, Cathleen L., und Brian T. Buckley. „Translating Analytical Techniques in Geochemistry to Environmental Health“. Molecules 26, Nr. 9 (10.05.2021): 2821. http://dx.doi.org/10.3390/molecules26092821.

Der volle Inhalt der Quelle
Annotation:
From human health exposure related to environmental contamination to ancient deep-Earth processes related to differentiation of the Earth’s geochemical reservoirs, the adaptability of inductively coupled plasma mass spectrometry (ICP-MS) has proven to be an indispensable standard technique that transcends disciplines. Continued advancements in ICP-MS, including improved auxiliary applications such as laser ablation (LA), ion/liquid chromatography (IC), automated pre-concentration systems (e.g., seaFAST), and improved desolvating nebulizer systems (e.g., Aridus and Apex) have revolutionized our ability to analyze almost any sample matrix with remarkable precision at exceedingly low elemental abundances. The versatility in ICP-MS applications allows for effective interdisciplinary crossover, opening a world of analytical possibilities. In this communication, we discuss the adaptability of geochemical techniques, including sample preparation and analysis, to environmental and biological systems, using Pb isotopes for source apportionment as a primary example.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
47

Kerr, R. A. „GEOCHEMISTRY: Humongous Eruptions Linked to Dramatic Environmental Changes“. Science 316, Nr. 5824 (27.04.2007): 527. http://dx.doi.org/10.1126/science.316.5824.527.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
48

Kryuchenko, N. O., und I. V. Kuraeva. „School of Sciences of exploration and environmental geochemistry“. Exploration and Environmental Geochemistry 19, Nr. 1(19) (19.12.2018): 3–8. http://dx.doi.org/10.15407/geochem2018.01.003.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
49

Carrillo-Chávez, A., O. Morton-Bermea, E. González-Partida, H. Rivas-Solorzano, G. Oesler, V. Garcı́a-Meza, E. Hernández, P. Morales und E. Cienfuegos. „Environmental geochemistry of the Guanajuato Mining District, Mexico“. Ore Geology Reviews 23, Nr. 3-4 (Oktober 2003): 277–97. http://dx.doi.org/10.1016/s0169-1368(03)00039-8.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
50

Zhang, Zhong, Baogui Zhang, Yecai Chen und Xingmao Zhang. „The Lanmuchang Tl deposit and its environmental geochemistry“. Science in China Series D: Earth Sciences 43, Nr. 1 (Februar 2000): 50–62. http://dx.doi.org/10.1007/bf02877830.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
Wir bieten Rabatte auf alle Premium-Pläne für Autoren, deren Werke in thematische Literatursammlungen aufgenommen wurden. Kontaktieren Sie uns, um einen einzigartigen Promo-Code zu erhalten!

Zur Bibliographie