Zeitschriftenartikel zum Thema „Energy Localization“

Um die anderen Arten von Veröffentlichungen zu diesem Thema anzuzeigen, folgen Sie diesem Link: Energy Localization.

Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an

Wählen Sie eine Art der Quelle aus:

Machen Sie sich mit Top-50 Zeitschriftenartikel für die Forschung zum Thema "Energy Localization" bekannt.

Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.

Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.

Sehen Sie die Zeitschriftenartikel für verschiedene Spezialgebieten durch und erstellen Sie Ihre Bibliographie auf korrekte Weise.

1

Jurdak, Raja, Peter Corke, Alban Cotillon, Dhinesh Dharman, Chris Crossman und Guillaume Salagnac. „Energy-efficient localization“. ACM Transactions on Sensor Networks 9, Nr. 2 (März 2013): 1–33. http://dx.doi.org/10.1145/2422966.2422980.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
2

Costanzo, Alessandra, Davide Dardari, Jurgis Aleksandravicius, Nicolo Decarli, Massimo Del Prete, Davide Fabbri, Marco Fantuzzi et al. „Energy Autonomous UWB Localization“. IEEE Journal of Radio Frequency Identification 1, Nr. 3 (September 2017): 228–44. http://dx.doi.org/10.1109/jrfid.2018.2792538.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
3

Rosen, Nathan. „Localization of gravitational energy“. Foundations of Physics 15, Nr. 10 (Oktober 1985): 997–1008. http://dx.doi.org/10.1007/bf00732842.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
4

Ketelaar, J. A. A., und J. van Dranen. „The energy of localization“. Recueil des Travaux Chimiques des Pays-Bas 69, Nr. 4 (02.09.2010): 477–81. http://dx.doi.org/10.1002/recl.19500690412.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
5

Absalamov, R. A., Т. J. Radjabov, I. R. Tolibjanov und B. T. Ibragimov. „Regularity Of Localization Of Fires At Energy Facilities In Uzbekistan“. American Journal of Applied sciences 03, Nr. 02 (28.02.2021): 111–18. http://dx.doi.org/10.37547/tajas/volume03issue02-13.

Der volle Inhalt der Quelle
Annotation:
In the article, the author analyzes emergencies at power plants in Uzbekistan, including research by scientists who conducted their research on extinguishing and localizing fires with the use of appropriate technical means at energy facilities, taking into account the observance of safety measures for energy facilities that have the property of electric shock to firefighters. In addition, the author provides a mathematical analysis of a fire event using the multi-interval method and formulates the appropriate conclusions. At the same time, the author proposes the use of the latest information technologies in extinguishing fires of this kind.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
6

Ahmed, M., und S. Moazzam Hossain. „Energy Localization in Curved Spacetime“. Progress of Theoretical Physics 93, Nr. 5 (01.05.1995): 901–3. http://dx.doi.org/10.1143/ptp/93.5.901.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
7

Medvedev, N. N., M. D. Starostenkov und M. E. Manley. „Energy localization on theAlsublattice ofPt3AlwithL12order“. Journal of Applied Physics 114, Nr. 21 (07.12.2013): 213506. http://dx.doi.org/10.1063/1.4837598.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
8

Dauxois, Thierry, und Michel Peyrard. „Energy localization in nonlinear lattices“. Physical Review Letters 70, Nr. 25 (21.06.1993): 3935–38. http://dx.doi.org/10.1103/physrevlett.70.3935.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
9

Takeno, S., und G. P. Tsironis. „Energy localization and molecular dissociation“. Physics Letters A 343, Nr. 4 (August 2005): 274–80. http://dx.doi.org/10.1016/j.physleta.2004.11.066.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
10

Cheng, Qiang, und Tie Jun Cui. „Energy localization using anisotropic metamaterials“. Physics Letters A 367, Nr. 4-5 (Juli 2007): 259–62. http://dx.doi.org/10.1016/j.physleta.2007.03.033.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
11

Brown, D. W., und L. Bernstein. „Spontaneous Localization of Vibrational Energy“. Le Journal de Physique IV 05, Nr. C4 (Mai 1995): C4–461—C4–474. http://dx.doi.org/10.1051/jp4:1995437.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
12

Paniagua, Juan Carlos, und Albert Moyano. „Localization-consistent electronic energy partitions“. International Journal of Quantum Chemistry 65, Nr. 2 (1997): 121–26. http://dx.doi.org/10.1002/(sici)1097-461x(1997)65:2<121::aid-qua3>3.0.co;2-y.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
13

Liu, Haifeng, Feng Xia, Zhuo Yang und Yang Cao. „An energy-efficient localization strategy for smartphones“. Computer Science and Information Systems 8, Nr. 4 (2011): 1117–28. http://dx.doi.org/10.2298/csis110430065l.

Der volle Inhalt der Quelle
Annotation:
In recent years, smartphones have become prevalent. Much attention is being paid to developing and making use of mobile applications that require position information. The Global Positioning System (GPS) is a very popular localization technique used by these applications because of its high accuracy. However, GPS incurs an unacceptable energy consumption, which severely limits the use of smartphones and reduces the battery lifetime. Then an urgent requirement for these applications is a localization strategy that not only provides enough accurate position information to meet users' need but also consumes less energy. In this paper, we present an energy-efficient localization strategy for smartphone applications. On one hand, it can dynamically estimate the next localization time point to avoid unnecessary localization operations. On the other hand, it can also automatically select the energy-optimal localization method. We evaluate the strategy through a series of simulations. Experimental results show that it can significantly reduce the localization energy consumption of smartphones while ensuring a good satisfaction degree.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
14

Chulaevsky, Victor. „From Fixed-Energy Localization Analysis to Dynamical Localization: An Elementary Path“. Journal of Statistical Physics 154, Nr. 6 (13.02.2014): 1391–429. http://dx.doi.org/10.1007/s10955-014-0937-7.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
15

Chaves-Silva, F. W., J. P. Puel und M. C. Santos. „Localization of energy and localized controllability“. ESAIM: Control, Optimisation and Calculus of Variations 27 (2021): 29. http://dx.doi.org/10.1051/cocv/2021005.

Der volle Inhalt der Quelle
Annotation:
We will consider both the controlled Schrödinger equation and the controlled wave equation on a bounded open set Ω of ℝN during an interval of time (0, T), with T > 0. The control is distributed and acts on a nonempty open subdomain ω of Ω. On the other hand, we consider another open subdomain D of Ω and the localized energy of the solution in D. The first question we want to study is the possibility of obtaining a prescribed value of this local energy at time T by choosing the control adequately. It turns out that this question is equivalent to a problem of exact or approximate controllability in D, which we call localized controllability and which is the second question studied in this article. We obtain sharp results on these two questions and, of course, the answers will require conditions on ω and T which will be given precisely later on.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
16

Berchialla, Luisa, Luigi Galgani und Antonio Giorgilli. „Localization of energy in FPU chains“. Discrete & Continuous Dynamical Systems - A 11, Nr. 4 (2004): 855–66. http://dx.doi.org/10.3934/dcds.2004.11.855.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
17

Moscatelli, Marco, Claudia Comi und Jean-Jacques Marigo. „Energy Localization through Locally Resonant Materials“. Materials 13, Nr. 13 (06.07.2020): 3016. http://dx.doi.org/10.3390/ma13133016.

Der volle Inhalt der Quelle
Annotation:
Among the attractive properties of metamaterials, the capability of focusing and localizing waves has recently attracted research interest to establish novel energy harvester configurations. In the same frame, in this work, we develop and optimize a system for concentrating mechanical energy carried by elastic anti-plane waves. The system, resembling a Fabry-Pérot interferometer, has two barriers composed of Locally Resonant Materials (LRMs) and separated by a homogeneous internal cavity. The attenuation properties of the LRMs allow for the localization of waves propagating at particular frequencies. With proper assumptions on the specific ternary LRMs, the separation of scales (between the considered wave lengths and the characteristic dimension of the employed unit cells) enables the use of a two-scale asymptotic technique for computing the effective behavior of the employed LRMs. This leads to a complete analytic description of the motion of the system. Here we report the results achieved by optimizing the geometry of the system for obtaining a maximum focusing of the incoming mechanical energy. The analytic results are then validated through numerical simulations.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
18

Nester, J. M. „Special orthonormal frames and energy localization“. Classical and Quantum Gravity 8, Nr. 1 (01.01.1991): L19—L23. http://dx.doi.org/10.1088/0264-9381/8/1/004.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
19

Piazza, Francesco, Stefano Lepri und Roberto Livi. „Cooling nonlinear lattices toward energy localization“. Chaos: An Interdisciplinary Journal of Nonlinear Science 13, Nr. 2 (Juni 2003): 637–45. http://dx.doi.org/10.1063/1.1535770.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
20

Choi, Taehwa, Yohan Chon und Hojung Cha. „Energy-efficient WiFi scanning for localization“. Pervasive and Mobile Computing 37 (Juni 2017): 124–38. http://dx.doi.org/10.1016/j.pmcj.2016.07.005.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
21

Maluf, José W. „Localization of energy in general relativity“. Journal of Mathematical Physics 36, Nr. 8 (August 1995): 4242–47. http://dx.doi.org/10.1063/1.530959.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
22

Fern�ndez, Ariel. „RNA self-splicing and energy localization“. International Journal of Theoretical Physics 30, Nr. 2 (Februar 1991): 129–36. http://dx.doi.org/10.1007/bf00670709.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
23

Balinsky, Alexander A., und Alexey E. Tyukov. „On localization of pseudo-relativistic energy“. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences 462, Nr. 2067 (10.01.2006): 897–912. http://dx.doi.org/10.1098/rspa.2005.1606.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
24

Casher, A., E. G. Floratos und N. C. Tsamis. „String localization and vacuum energy finiteness“. Physics Letters B 199, Nr. 3 (Dezember 1987): 377–79. http://dx.doi.org/10.1016/0370-2693(87)90937-3.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
25

Yang, Yankan, Baoqi Huang, Zhendong Xu und Runze Yang. „A Fuzzy Logic-Based Energy-Adaptive Localization Scheme by Fusing WiFi and PDR“. Wireless Communications and Mobile Computing 2023 (07.01.2023): 1–17. http://dx.doi.org/10.1155/2023/9052477.

Der volle Inhalt der Quelle
Annotation:
Fusing WiFi fingerprint localization and pedestrian dead reckoning (PDR) on smartphones is attractive because of their obvious complementarity in localization accuracy and energy consumption. Although fusion localization algorithms tend to improve localization accuracy, extra hardware and software involved will result in extra computations, such that energy consumption is inevitably increased. Thus, in this study, we propose a novel fusion localization scheme based on fuzzy logic, which aims to achieve ideal localization accuracy by consuming as little energy as possible. Specifically, energy-efficient inertial measurement unit (IMU) sensors are routinely called to provide the displacement of a smartphone user in the manner of PDR, whereas a fuzzy inference system is employed to adaptively schedule energy-hungry WiFi scans to fulfill WiFi fingerprint localization according to a coarse metric for fusion localization errors and the remaining energy of the smartphone, so as to achieve a trade-off between localization accuracy and energy consumption. Moreover, in order to mitigate the effect of drift errors induced by PDR, straight trajectories of the user are further identified using a series of WiFi localization results to calibrate heading estimates of PDR. Extensive experimental results demonstrate that the proposed scheme achieves the same accuracy as the complementary filter, but consumes 38.02% energy than the complementary filter, confirming that the proposed scheme can effectively balance the localization accuracy and energy consumption.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
26

Afinanisa, Qonita, Min Kyung Cho und Hyun-A. Seong. „AMPK Localization: A Key to Differential Energy Regulation“. International Journal of Molecular Sciences 22, Nr. 20 (10.10.2021): 10921. http://dx.doi.org/10.3390/ijms222010921.

Der volle Inhalt der Quelle
Annotation:
As the central node between nutrition signaling input and the metabolic pathway, AMP-activated protein kinase (AMPK) is tightly regulated to maintain energy homeostasis. Subcellular compartmentalization of AMPK is one of the critical regulations that enables AMPK to access proper targets and generate appropriate responses to specific perturbations and different levels of stress. One of the characterized localization mechanisms is RanGTPase-driven CRM1 that recognizes the nuclear export sequence (NES) on the α subunit to translocate AMPK into the cytoplasm. Nuclear localization putatively employs RanGTPase-driven importin that might recognize the nuclear localization signal (NLS) present on the AMPKα2 kinase domain. Nucleo-cytoplasmic shuttling of AMPK is influenced by multiple factors, such as starvation, exercise, heat shock, oxidant, cell density, and circadian rhythm. Tissue-specific localization, which distributes AMPK trimers with different combinations, has also been shown to be vital in maintaining tissue-specific metabolism. Tissue-specific and subcellular distribution of AMPK might be attributed to differences in the expression of the subunit, the stabilization by protein regulators, tissue activity, and the localization of AMPK activators. Considering the importance of AMPK localization in coordinating signaling and metabolism, further research is due to fully elucidate the largely unknown complex mechanism underlying this regulation.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
27

Manevitch, Leonid I., Agnessa Kovaleva und Grigori Sigalov. „Nonstationary energy localization vs conventional stationary localization in weakly coupled nonlinear oscillators“. Regular and Chaotic Dynamics 21, Nr. 2 (März 2016): 147–59. http://dx.doi.org/10.1134/s1560354716020015.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
28

Wu, Xiaoping. „Acoustic Energy-based Sensor Localization With Unknown Transmit Energy Levels“. International Journal of Ad Hoc and Ubiquitous Computing 1, Nr. 1 (2017): 1. http://dx.doi.org/10.1504/ijahuc.2017.10006702.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
29

Zhou, Ziqin, und Hojjat Adeli. „Wavelet energy spectrum for time-frequency localization of earthquake energy“. International Journal of Imaging Systems and Technology 13, Nr. 2 (2003): 133–40. http://dx.doi.org/10.1002/ima.10038.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
30

Taheri, Mostafa, und Seyed Ahmad Motamedi. „Transceiver Optimization for ToA-Based Localization of Mobile WSN“. Journal of Circuits, Systems and Computers 25, Nr. 09 (21.06.2016): 1650100. http://dx.doi.org/10.1142/s0218126616501000.

Der volle Inhalt der Quelle
Annotation:
One of the main parameters in wireless sensor networks (WSNs) is the design of energy-efficient protocols. And accuracy is another central goal of localization. Since sensor nodes run on battery power, any WSN application and accurate localization needs to be energy-efficient. In this paper, the accuracy of localization is increased by accurate measurement of the distance between the mobile sensors. Limit error in multiple-input multiple-output (MIMO) has been calculated by CRB method. Virtual MIMO (VMIMO) technique can obtain better localization precision and the localization is energy-efficient. Optimum selection of the number of the transceiver nodes is obtained by the lowest possible energy consumption, the existent localization error, and speed of nodes. Mathematical relation between energy consumption and localization of mobile nodes is presented and then verified by simulation. VMIMO decreases power of transmitters and this in turn will result in decreasing destructive effects of electromagnetic sensitivity (EMS) on body. Furthermore, optimized localization parameters will increase the efficiency of the system and network lifetime.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
31

Weaver, Richard. „Localization, Scaling, and Diffuse Transport of Wave Energy in Disordered Media“. Applied Mechanics Reviews 49, Nr. 2 (01.02.1996): 126–35. http://dx.doi.org/10.1115/1.3101886.

Der volle Inhalt der Quelle
Annotation:
The Anderson localization literature in structural acoustics has to date been concerned largely with applications to the vibrations of one dimensional structures, whether mono-coupled or multi-coupled, and to steady state responses in such systems. This paper presents a brief tutorial on the theory of wave localization in one and higher dimensions with an emphasis on the scaling theory of localization. It then reviews the acoustic and optical literature on wave localization with an emphasis on diffuse time domain responses to transient loads. Numerical and laboratory experiments demonstrating localization in higher dimensions and investigating the time-domain behavior of such systems are discussed. Scaling theory is shown to provide predictions for localization lengths in weakly disordered multi-coupled systems, and for localization lengths in weakly disordered two-dimensional systems as well. Theoretical arguments for rates of diffuse transport are contrasted with the experimental evidence. The paper concludes with a discussion of wave energy confinement in non-localizing disordered systems.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
32

Guo, Ying, Qinghe Han, Jinxin Wang und Xu Yu. „Energy-aware localization algorithm for Ocean Internet of Things“. Sensor Review 38, Nr. 2 (19.03.2018): 129–36. http://dx.doi.org/10.1108/sr-06-2017-0105.

Der volle Inhalt der Quelle
Annotation:
Purpose Localization is one of the critical issues in Ocean Internet of Things (OITs). The existing research results of localization in OITs are very limited. It poses many challenges due to the difficulty of deploy beacon accurately, the difficulty of transmission distance estimation in harsh ocean environment and the underwater node mobility. This paper aims to provide a novel localization algorithm to solve these problems. Design/methodology/approach This paper takes the ship with accurate position as a beacon, analyzes the relationship between underwater energy attenuation and node distance and takes them into OITs localization algorithm design. Then, it studies the movement regulation of underwater nodes in the action of ocean current, and designs an Energy-aware Localization Algorithm (ELA) for OITs. Findings Proposing an ELA. ELA takes the ship with accurate position information as a beacon to solve the problem of beacon deployment. ELA does not need to calculate the information transmission distance which solves the problem of distance estimation. It takes underwater node movement regulation into computation to solve the problem of node mobility. Originality value This paper provides an ELA based on the relationship between propagation energy attenuation and node distance for OITs. It solves the problem of localization in dynamic underwater networks.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
33

Pinto Neto, N., und P. I. Trajtenberg. „On the localization of the gravitational energy“. Brazilian Journal of Physics 30, Nr. 1 (März 2000): 181–88. http://dx.doi.org/10.1590/s0103-97332000000100020.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
34

Correia, Sérgio D., Marko Beko, Luis A. Da Silva Cruz und Slavisa Tomic. „Elephant Herding Optimization for Energy-Based Localization“. Sensors 18, Nr. 9 (29.08.2018): 2849. http://dx.doi.org/10.3390/s18092849.

Der volle Inhalt der Quelle
Annotation:
This work addresses the energy-based source localization problem in wireless sensors networks. Instead of circumventing the maximum likelihood (ML) problem by applying convex relaxations and approximations, we approach it directly by the use of metaheuristics. To the best of our knowledge, this is the first time that metaheuristics are applied to this type of problem. More specifically, an elephant herding optimization (EHO) algorithm is applied. Through extensive simulations, the key parameters of the EHO algorithm are optimized such that they match the energy decay model between two sensor nodes. A detailed analysis of the computational complexity is presented, as well as a performance comparison between the proposed algorithm and existing non-metaheuristic ones. Simulation results show that the new approach significantly outperforms existing solutions in noisy environments, encouraging further improvement and testing of metaheuristic methods.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
35

Abdellatif, Mohamed. „GreenLoc: Energy Efficient Wifi-Based Indoor Localization“. Qatar Foundation Annual Research Forum Proceedings, Nr. 2011 (November 2011): CSP20. http://dx.doi.org/10.5339/qfarf.2011.csp20.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
36

Xia Yu, Guan, Xin Ye Yu, Li Juan Xia und Bai Bing Xv. „Energy Localization Using Anisotropic Left-Handed Materials“. Zeitschrift für Naturforschung A 68a (20.02.2013): 300–304. http://dx.doi.org/10.5560/zna.2012-0119.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
37

van Wijk, Kasper, und Matthew Haney. „Energy propagation and localization in disordered media“. Journal of the Acoustical Society of America 121, Nr. 5 (Mai 2007): 3100. http://dx.doi.org/10.1121/1.4782007.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
38

Abu-Mahfouz, Adnan M., und Gerhard P. Hancke. „ALWadHA Localization Algorithm: Yet More Energy Efficient“. IEEE Access 5 (2017): 6661–67. http://dx.doi.org/10.1109/access.2017.2687619.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
39

Bilbault, J. M., und P. Marquié. „Energy localization in a nonlinear discrete system“. Physical Review E 53, Nr. 5 (01.05.1996): 5403–8. http://dx.doi.org/10.1103/physreve.53.5403.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
40

Keller, Mark W., A. Mittal, J. W. Sleight, R. G. Wheeler, D. E. Prober, R. N. Sacks und H. Shtrikmann. „Energy-averaged weak localization in chaotic microcavities“. Physical Review B 53, Nr. 4 (15.01.1996): R1693—R1696. http://dx.doi.org/10.1103/physrevb.53.r1693.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
41

Aygün, S., M. Aygün und I. Tarhan. „Energy-momentum localization in Marder space-time“. Pramana 68, Nr. 1 (Januar 2007): 21–30. http://dx.doi.org/10.1007/s12043-007-0002-z.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
42

Zhang, Wei, und X. G. Zhao. „Dynamical localization and nondispersion of energy spectrum“. Physica E: Low-dimensional Systems and Nanostructures 9, Nr. 4 (April 2001): 667–73. http://dx.doi.org/10.1016/s1386-9477(00)00283-6.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
43

Hayward, Sean A. „Quasi-localization of Bondi-Sachs energy loss“. Classical and Quantum Gravity 11, Nr. 12 (01.12.1994): 3037–48. http://dx.doi.org/10.1088/0264-9381/11/12/017.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
44

Lubin, Dror, und Isaac Goldhirsch. „Scaling of energy localization in mesoscopic rings“. Physical Review B 46, Nr. 4 (15.07.1992): 2617–20. http://dx.doi.org/10.1103/physrevb.46.2617.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
45

Coffey, C. S. „Energy localization in rapidly deforming crystalline solids“. Physical Review B 32, Nr. 8 (15.10.1985): 5335–41. http://dx.doi.org/10.1103/physrevb.32.5335.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
46

Stockman, M. I., S. V. Faleev und D. J. Bergman. „Coherently controlled femtosecond energy localization on nanoscale“. Applied Physics B 74, S1 (Juni 2002): s63—s67. http://dx.doi.org/10.1007/s00340-002-0868-x.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
47

Swenberg, C. E., L. S. Myers und J. H. Miller. „Energy and charge localization in irradiated DNA“. Advances in Space Research 14, Nr. 10 (Oktober 1994): 181–201. http://dx.doi.org/10.1016/0273-1177(94)90467-7.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
48

Woo, Elizabeth S., Dana Dellapiazza, Angela S. Wang und John S. Lazo. „Energy-dependent nuclear binding dictates metallothionein localization“. Journal of Cellular Physiology 182, Nr. 1 (Januar 2000): 69–76. http://dx.doi.org/10.1002/(sici)1097-4652(200001)182:1<69::aid-jcp8>3.0.co;2-9.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
49

Feddersen, H. „Localization of vibrational energy in globular protein“. Physics Letters A 154, Nr. 7-8 (April 1991): 391–95. http://dx.doi.org/10.1016/0375-9601(91)90039-b.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
50

Taheri, Mostafa, und Seyed Ahmad Motamedi. „Energy-efficient cooperative localization in mobile WSN“. IEEJ Transactions on Electrical and Electronic Engineering 12, Nr. 1 (22.11.2016): 71–79. http://dx.doi.org/10.1002/tee.22346.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
Wir bieten Rabatte auf alle Premium-Pläne für Autoren, deren Werke in thematische Literatursammlungen aufgenommen wurden. Kontaktieren Sie uns, um einen einzigartigen Promo-Code zu erhalten!

Zur Bibliographie