Inhaltsverzeichnis
Auswahl der wissenschaftlichen Literatur zum Thema „Energy distributions of desorbates“
Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an
Machen Sie sich mit den Listen der aktuellen Artikel, Bücher, Dissertationen, Berichten und anderer wissenschaftlichen Quellen zum Thema "Energy distributions of desorbates" bekannt.
Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.
Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.
Zeitschriftenartikel zum Thema "Energy distributions of desorbates"
Georgiou, S., A. Koubenakis, P. Kontoleta und M. Syrrou. „A Comparative Study of the UV Laser Ablation of Van Der Waals Films of Benzene Derivatives“. Laser Chemistry 17, Nr. 2 (01.01.1997): 73–95. http://dx.doi.org/10.1155/1997/45930.
Der volle Inhalt der QuelleKOŁASIŃSKI, KURT W. „DYNAMICS OF HYDROGEN INTERACTIONS WITH Si(100) AND Si(111) SURFACES“. International Journal of Modern Physics B 09, Nr. 21 (30.09.1995): 2753–809. http://dx.doi.org/10.1142/s0217979295001038.
Der volle Inhalt der QuelleImpey, C. D., und G. Neugebauer. „Energy distributions of blazars“. Astronomical Journal 95 (Februar 1988): 307. http://dx.doi.org/10.1086/114638.
Der volle Inhalt der QuelleStankovic, Ljubisa, Ervin Sejdic und Milos Dakovic. „Vertex-Frequency Energy Distributions“. IEEE Signal Processing Letters 25, Nr. 3 (März 2018): 358–62. http://dx.doi.org/10.1109/lsp.2017.2764884.
Der volle Inhalt der QuelleKurucz, Robert L. „Theoretical Stellar Energy Distributions“. Highlights of Astronomy 7 (1986): 827–31. http://dx.doi.org/10.1017/s1539299600007358.
Der volle Inhalt der QuelleGonzález-Dávila, J. C. „Energy of generalized distributions“. Differential Geometry and its Applications 49 (Dezember 2016): 510–28. http://dx.doi.org/10.1016/j.difgeo.2016.09.009.
Der volle Inhalt der QuellePoland, Douglas. „Energy distributions of gallium nanoclusters“. Journal of Chemical Physics 123, Nr. 2 (08.07.2005): 024707. http://dx.doi.org/10.1063/1.1992479.
Der volle Inhalt der QuelleBerta, S., D. Lutz, P. Santini, S. Wuyts, D. Rosario, D. Brisbin, A. Cooray et al. „Panchromatic spectral energy distributions ofHerschelsources“. Astronomy & Astrophysics 551 (März 2013): A100. http://dx.doi.org/10.1051/0004-6361/201220859.
Der volle Inhalt der QuelleImpey, Chris, und Loretta Gregorini. „Energy distributions of radio galaxies“. Astronomical Journal 105 (März 1993): 853. http://dx.doi.org/10.1086/116477.
Der volle Inhalt der QuelleElvis, Martin, Belinda J. Wilkes, Jonathan C. McDowell, Richard F. Green, Jill Bechtold, S. P. Willner, M. S. Oey, Elisha Polomski und Roc Cutri. „Atlas of quasar energy distributions“. Astrophysical Journal Supplement Series 95 (November 1994): 1. http://dx.doi.org/10.1086/192093.
Der volle Inhalt der QuelleDissertationen zum Thema "Energy distributions of desorbates"
Del, Fré Samuel. „Études théoriques de la photodésorption d'analogues de glaces moléculaires interstellaires : application au monoxyde de carbone“. Electronic Thesis or Diss., Université de Lille (2022-....), 2024. http://www.theses.fr/2024ULILR039.
Der volle Inhalt der QuelleUnusual amounts of gas-phase molecules are detected in the cold regions (around 10 K) of the interstellar medium (ISM), primarily attributed to the non-thermal desorption of molecules from ices deposited on dust grains. In particular, vacuum ultraviolet (VUV) photon-induced desorption (photodesorption) is considered a major desorption pathway in photon-dominated regions of the ISM. Experimental investigations have revealed that in pure carbon monoxide (CO) ices, a ubiquitous species in the ISM, VUV photodesorption can follow an indirect mechanism of desorption induced by electronic transitions (DIET) for photons with energy between 7 and 10 eV. Nevertheless, the understanding of the underlying molecular mechanisms remains a topic of scientific debate. In this astrochemical context, we present a combined theoretical study using ab initio molecular dynamics (AIMD) based on density functional theory (DFT) and machine learning potentials (PML) constructed with artificial neural networks (ANN) to study the final part of the DIET mechanism in amorphous CO ices. Here, a highly vibrationally excited CO molecule (v = 40) at the center of an aggregate initially composed of 50 CO molecules, optimized and then thermalized at 15 K, triggers the indirect desorption of surface molecules. Our theoretical results reveal that the desorption process consists of three fundamental steps, beginning with a mutual attraction between the vibrationally excited molecule and one or two neighboring molecules, activated by CO bond stretching and facilitated by the steric effect of surrounding molecules. This is followed by a sequence of energy transfers initiated by a collision, resulting in the desorption of vibrationally cold CO molecules in 88% of the AIMD trajectories. Additionally, the theoretical distributions of the internal and translational energy of desorbed molecules remarkably match experimental results, supporting the crucial role of vibrational relaxation in the desorption process. Finally, the first PML constructed from AIMD simulations accurately fit the multidimensional potential energy surface of the system, allowing efficient prediction of aggregate energies and atomic forces. Classical molecular dynamics simulations using these potentials are over 1800 times faster than those based on AIMD while offering precision comparable to DFT
MacKenzie, Todd. „New methods for deblending spectral energy distributions in confused imaging“. Thesis, University of British Columbia, 2015. http://hdl.handle.net/2429/56192.
Der volle Inhalt der QuelleScience, Faculty of
Physics and Astronomy, Department of
Graduate
Hornsey, Richard Ian. „Factors affecting ion energy distributions in liquid metal ion sources“. Thesis, University of Oxford, 1989. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.236154.
Der volle Inhalt der QuelleTurrell, Arthur Edward. „Processes driving non-Maxwellian distributions in high energy density plasmas“. Thesis, Imperial College London, 2013. http://hdl.handle.net/10044/1/18083.
Der volle Inhalt der QuelleYang, Guangyuan. „The Energy Goodness-of-fit Test for Univariate Stable Distributions“. Bowling Green State University / OhioLINK, 2012. http://rave.ohiolink.edu/etdc/view?acc_num=bgsu1339476355.
Der volle Inhalt der QuelleStins, O. W. M. „A Retarding Field Energy Analyser to measure the Energy Distributions of Liquid Metal Ion Sources“. Forschungszentrum Dresden, 2010. http://nbn-resolving.de/urn:nbn:de:bsz:d120-qucosa-32306.
Der volle Inhalt der QuelleStins, O. W. M. „A Retarding Field Energy Analyser to measure the Energy Distributions of Liquid Metal Ion Sources“. Forschungszentrum Rossendorf, 1994. https://hzdr.qucosa.de/id/qucosa%3A22057.
Der volle Inhalt der QuelleHorwat, Stephen M. „Continuous distributions of non-dilatonic branes“. Thesis, McGill University, 2000. http://digitool.Library.McGill.CA:80/R/?func=dbin-jump-full&object_id=31235.
Der volle Inhalt der QuelleFretwell, Tracey Ann. „Monte Carlo simulation of energy intensity distributions for electron beam lithography“. Thesis, University of Manchester, 1995. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.576984.
Der volle Inhalt der QuelleDahlgren, David. „Monte Carlo simulations of Linear Energy Transfer distributions in radiation therapy“. Thesis, Uppsala universitet, Högenergifysik, 2021. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-446550.
Der volle Inhalt der QuelleBücher zum Thema "Energy distributions of desorbates"
Kay, M. J. Ion energy distributions. Manchester: UMIST, 1993.
Den vollen Inhalt der Quelle findenFretwell, Tracey Ann. Monte Carlo simulation of energy intensity distributions for electron beam lithography. Manchester: University of Manchester, 1995.
Den vollen Inhalt der Quelle findenHodge, Bri-Mathias. Solar ramping distributions over multiple timescales and weather patterns. Golden, Colo: National Renewable Energy Laboratory, 2011.
Den vollen Inhalt der Quelle findenJ, Shainsky Lauri, Hrsg. Biomass and nutrient distributions in central Oregon second-growth Ponderosa pine ecosystems. Portland, OR (333 S.W. First Avenue, P.O. Box 3890, Portland 97208-3890): U.S. Dept. of Agriculture, Forest Service, Pacific Northwest Research Station, 1995.
Den vollen Inhalt der Quelle findenC, Popescu Cristina, Tuffs Richard J und SED2004 International Workshop on the Spectral Energy Distributions of Gas-Rich Galaxies (2004 : Heidelberg, Germany), Hrsg. The spectral energy distributions of gas-rich galaxies: Confronting models with data : international workshop, Heidelberg, Germany, 4 - 8 October 2004. Melville, N.Y: American Institute of Physics, 2005.
Den vollen Inhalt der Quelle findenSED, 2004 (2004 Heidelberg Germany). The spectral energy distributions of gas-rich galaxies: Confronting models with data : international workshop, Heidelberg, Germany, 4-8 October 2004 : SED 2004 Heidelberg. [Melville, N.Y.]: American Institute of Physics, 2005.
Den vollen Inhalt der Quelle findenAndreo, P. Tables of charge and energy deposition distributions in elemental materials irradiated by plane-parallel electron beams with energies between 0.1 and 100 MeV. Osaka, Japan: Research Institute for Advanced Science and Technology, University of Osaka Prefecture (1-2 Gakuen-cho, Sakai, Osaka 593, Japan), 1992.
Den vollen Inhalt der Quelle findenPapanikolaou, N. Handbook of calculated electron momentum distributions, compton profiles, and x-ray form factors of elemental solids. Boca Raton: CRC Press, 1991.
Den vollen Inhalt der Quelle findenUnited States. Congress. House. Committee on Energy and Commerce. Subcommittee on Commerce, Consumer Protection, and Competitiveness. Long-term care insurance standards: Hearing before the Subcommittee on Commerce, Consumer Protection, and Competitiveness of the Committee on Energy and Commerce, House of Representatives, One Hundred Second Congress, first session, on H.R. 1205, H.R. 1916, and H.R. 2378, bills to regulate long-term care insurance policies, to allow tax-free distributions from IRA's for purchase of long-term care insurance by certain individuals, and to establish federal standards for long-term care insurance policies, October 24, 1991. Washington: U.S. G.P.O., 1992.
Den vollen Inhalt der Quelle findenNational Aeronautics and Space Administration (NASA) Staff. Far-Infrared Spectral Energy Distributions of Quasars. Independently Published, 2018.
Den vollen Inhalt der Quelle findenBuchteile zum Thema "Energy distributions of desorbates"
Dapor, Maurizio. „Electron Energy Distributions“. In Transport of Energetic Electrons in Solids, 121–38. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-43264-5_10.
Der volle Inhalt der QuelleDapor, Maurizio. „Electron Energy Distributions“. In Transport of Energetic Electrons in Solids, 93–105. Cham: Springer International Publishing, 2014. http://dx.doi.org/10.1007/978-3-319-03883-4_8.
Der volle Inhalt der QuelleDapor, Maurizio. „Electron Energy Distributions“. In Transport of Energetic Electrons in Solids, 95–108. Cham: Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-47492-2_8.
Der volle Inhalt der QuelleKroesen, G. M. W., M. Grift, R. J. M. M. Snijkers und F. J. Hoog. „Ion Energy Distributions“. In Advanced Technologies Based on Wave and Beam Generated Plasmas, 149–73. Dordrecht: Springer Netherlands, 1999. http://dx.doi.org/10.1007/978-94-017-0633-9_8.
Der volle Inhalt der QuelleDapor, Maurizio. „Electron Energy Distributions“. In Transport of Energetic Electrons in Solids, 151–72. Cham: Springer International Publishing, 2023. http://dx.doi.org/10.1007/978-3-031-37242-1_10.
Der volle Inhalt der QuelleStarzak, Michael E. „Maxwell–Boltzmann Distributions“. In Energy and Entropy, 197–216. New York, NY: Springer New York, 2009. http://dx.doi.org/10.1007/978-0-387-77823-5_13.
Der volle Inhalt der QuelleStanković, Ljubiša, Miloš Daković und Ervin Sejdić. „Vertex-Frequency Energy Distributions“. In Signals and Communication Technology, 377–415. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-030-03574-7_11.
Der volle Inhalt der QuelleKurucz, Robert L. „Theoretical Stellar Energy Distributions“. In Highlights of Astronomy, 827–31. Dordrecht: Springer Netherlands, 1986. http://dx.doi.org/10.1007/978-94-010-9376-7_124.
Der volle Inhalt der QuelleDa Costa Lewis, Nigel. „Modeling and Fitting Price Distributions“. In Energy Risk Modeling, 65–106. London: Palgrave Macmillan UK, 2005. http://dx.doi.org/10.1057/9780230523784_5.
Der volle Inhalt der QuelleKellogg, G. J., P. E. Sokol und J. White. „High Energy Inelastic Neutron Scattering from Hydrogen in Cesium Intercalated Graphite“. In Momentum Distributions, 351–54. Boston, MA: Springer US, 1989. http://dx.doi.org/10.1007/978-1-4899-2554-1_27.
Der volle Inhalt der QuelleKonferenzberichte zum Thema "Energy distributions of desorbates"
Hiskes, J. R. „Electron energy distributions and vibrational population distributions“. In Production and neutralization of negative ions and beams. AIP, 1990. http://dx.doi.org/10.1063/1.39654.
Der volle Inhalt der QuellePolletta, M., L. Maraschi, L. Chiappetti, G. Trinchieri, M. Giorgetti, A. Comastri, L. Angelini und M. Cappi. „Intrinsic AGN Spectral Energy Distributions“. In X-RAY ASTRONOMY 2009; PRESENT STATUS, MULTI-WAVELENGTH APPROACH AND FUTURE PERSPECTIVES: Proceedings of the International Conference. AIP, 2010. http://dx.doi.org/10.1063/1.3475317.
Der volle Inhalt der QuelleWOHLEVER, J., und R. BERNHARD. „Energy distributions in rods and beams“. In 12th Aeroacoustic Conference. Reston, Virigina: American Institute of Aeronautics and Astronautics, 1989. http://dx.doi.org/10.2514/6.1989-1122.
Der volle Inhalt der QuelleGay Ducati, Maria Beatriz. „Dilepton Backward Rapidity Distributions“. In Diffraction 06, International Workshop on Diffraction in High-Energy Physics. Trieste, Italy: Sissa Medialab, 2007. http://dx.doi.org/10.22323/1.035.0053.
Der volle Inhalt der QuelleJimenez-Delgado, Pedro. „Dynamical Parton Distributions at NNLO“. In European Physical Society Europhysics Conference on High Energy Physics. Trieste, Italy: Sissa Medialab, 2010. http://dx.doi.org/10.22323/1.084.0307.
Der volle Inhalt der QuelleGoldstein, Gary R. „Determining quark helicity from jet distributions“. In HIGH−ENERGY SPIN PHYSICS/EIGHTH INTERNATIONAL SYMPOSIUM. AIP, 1989. http://dx.doi.org/10.1063/1.38276.
Der volle Inhalt der QuelleHautmann, Francesco. „TMD parton distributions and splitting functions“. In 35th International Conference of High Energy Physics. Trieste, Italy: Sissa Medialab, 2011. http://dx.doi.org/10.22323/1.120.0150.
Der volle Inhalt der QuelleWallon, Samuel, Mounir El Beiyad, Bernard Pire, Mathieu Segond und Lech Szymanowski. „On chiral-odd Generalized Parton Distributions“. In 35th International Conference of High Energy Physics. Trieste, Italy: Sissa Medialab, 2011. http://dx.doi.org/10.22323/1.120.0178.
Der volle Inhalt der QuelleWan, X., L. Chen, D. Z. Jin, W. Xiang und X. H. Tan. „Energy distributions and angular distributions of pulsed plasmas based on vacuum surface flashover“. In 2016 27th International Symposium on Discharges and Electrical Insulation in Vacuum (ISDEIV). IEEE, 2016. http://dx.doi.org/10.1109/deiv.2016.7748687.
Der volle Inhalt der QuelleWu, Alan C., Michael A. Lieberman und John P. Verboncoeur. „Ion Energy Distributions in Multifrequency Capacitive Discharges“. In 2007 IEEE Pulsed Power Plasma Science Conference. IEEE, 2007. http://dx.doi.org/10.1109/ppps.2007.4345772.
Der volle Inhalt der QuelleBerichte der Organisationen zum Thema "Energy distributions of desorbates"
Skurikhin, Alexei N., und Richard J. Stead. Seismic Spectrogram Recognition by Matching the Energy Distributions. Office of Scientific and Technical Information (OSTI), November 2016. http://dx.doi.org/10.2172/1331246.
Der volle Inhalt der QuelleFallen, Christopher T. Determining Energy Distributions of HF-Accelerated Electrons at HAARP. Fort Belvoir, VA: Defense Technical Information Center, November 2015. http://dx.doi.org/10.21236/ad1000661.
Der volle Inhalt der QuelleWoodworth, J. R., M. E. Riley und D. C. Meister. Ion energy and angular distributions in inductively coupled Argon RF discharges. Office of Scientific and Technical Information (OSTI), März 1996. http://dx.doi.org/10.2172/212756.
Der volle Inhalt der QuelleSchivell, J., D. A. Monticello und S. J. Zweben. Calculation of charged fusion product distributions in space, energy, and time. Office of Scientific and Technical Information (OSTI), Februar 1992. http://dx.doi.org/10.2172/5609910.
Der volle Inhalt der QuelleD.N. Ruzic, M.J. Goeckner, Samuel A. Cohen und Zhehui Wang. Nitrogen Atom Energy Distributions in a Hollow-cathode Planar Sputtering Magnetron. Office of Scientific and Technical Information (OSTI), Juni 1999. http://dx.doi.org/10.2172/8184.
Der volle Inhalt der QuelleSchivell, J., D. A. Monticello und S. J. Zweben. Calculation of charged fusion product distributions in space, energy, and time. Office of Scientific and Technical Information (OSTI), Februar 1992. http://dx.doi.org/10.2172/10130956.
Der volle Inhalt der QuelleZhou, Li. A Retarding-potential Analyzer for Measuring Energy Distributions in Electron Beams. Portland State University Library, Januar 2000. http://dx.doi.org/10.15760/etd.6628.
Der volle Inhalt der QuelleWoodworth, J. R., M. E. Riley und T. W. Hamilton. Ion energy and angular distributions in inductively driven RF discharges in chlorine. Office of Scientific and Technical Information (OSTI), März 1996. http://dx.doi.org/10.2172/231654.
Der volle Inhalt der QuelleKerns, J. A. Alpha particle density and energy distributions in tandem mirrors using Monte-Carlo techniques. Office of Scientific and Technical Information (OSTI), Mai 1986. http://dx.doi.org/10.2172/5728137.
Der volle Inhalt der QuelleStanley, B. J., und G. Guiochon. Numerical estimation of adsorption energy distributions from adsorption isotherm data with the expectation-maximization method. Office of Scientific and Technical Information (OSTI), August 1993. http://dx.doi.org/10.2172/10173477.
Der volle Inhalt der Quelle