Inhaltsverzeichnis
Auswahl der wissenschaftlichen Literatur zum Thema „Encoded video stream“
Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an
Machen Sie sich mit den Listen der aktuellen Artikel, Bücher, Dissertationen, Berichten und anderer wissenschaftlichen Quellen zum Thema "Encoded video stream" bekannt.
Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.
Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.
Zeitschriftenartikel zum Thema "Encoded video stream"
Al-Tamimi, Abdel-Karim, Raj Jain und Chakchai So-In. „High-Definition Video Streams Analysis, Modeling, and Prediction“. Advances in Multimedia 2012 (2012): 1–13. http://dx.doi.org/10.1155/2012/539396.
Der volle Inhalt der QuelleReljin, Irini, und Branimir Reljin. „Fractal and multifractal analyses of compressed video sequences“. Facta universitatis - series: Electronics and Energetics 16, Nr. 3 (2003): 401–14. http://dx.doi.org/10.2298/fuee0303401r.
Der volle Inhalt der QuelleGrois, Dan, Evgeny Kaminsky und Ofer Hadar. „Efficient Real-Time Video-in-Video Insertion into a Pre-Encoded Video Stream“. ISRN Signal Processing 2011 (14.02.2011): 1–11. http://dx.doi.org/10.5402/2011/975462.
Der volle Inhalt der QuelleStankowski, Jakub, Damian Karwowski, Tomasz Grajek, Krzysztof Wegner, Jakub Siast, Krzysztof Klimaszewski, Olgierd Stankiewicz und Marek Domański. „Analysis of Compressed Data Stream Content in HEVC Video Encoder“. International Journal of Electronics and Telecommunications 61, Nr. 2 (01.06.2015): 121–27. http://dx.doi.org/10.1515/eletel-2015-0015.
Der volle Inhalt der QuellePolitis, Ilias, Michail Tsagkaropoulos, Thomas Pliakas und Tasos Dagiuklas. „Distortion Optimized Packet Scheduling and Prioritization of Multiple Video Streams over 802.11e Networks“. Advances in Multimedia 2007 (2007): 1–11. http://dx.doi.org/10.1155/2007/76846.
Der volle Inhalt der QuelleYang, Fu Zheng, Jia Run Song und Shu Ai Wan. „A No-Reference Quality Assessment System for Video Streaming over RTP“. Advanced Materials Research 179-180 (Januar 2011): 243–48. http://dx.doi.org/10.4028/www.scientific.net/amr.179-180.243.
Der volle Inhalt der QuelleWang, Ke, Xuejing Li, Jianhua Yang, Jun Wu und Ruifeng Li. „Temporal action detection based on two-stream You Only Look Once network for elderly care service robot“. International Journal of Advanced Robotic Systems 18, Nr. 4 (01.07.2021): 172988142110383. http://dx.doi.org/10.1177/17298814211038342.
Der volle Inhalt der QuelleHamza, Ahmed M., Mohamed Abdelazim, Abdelrahman Abdelazim und Djamel Ait-Boudaoud. „HEVC Rate-Distortion Optimization with Source Modeling“. Electronic Imaging 2021, Nr. 10 (18.01.2021): 259–1. http://dx.doi.org/10.2352/issn.2470-1173.2021.10.ipas-259.
Der volle Inhalt der QuelleMohammed, Dhrgham Hani, und Laith Ali Abdul-Rahaim. „A Proposed of Multimedia Compression System Using Three - Dimensional Transformation“. Webology 18, SI05 (30.10.2021): 816–31. http://dx.doi.org/10.14704/web/v18si05/web18264.
Der volle Inhalt der QuelleYamagiwa, Shinichi, und Yuma Ichinomiya. „Stream-Based Visually Lossless Data Compression Applying Variable Bit-Length ADPCM Encoding“. Sensors 21, Nr. 13 (05.07.2021): 4602. http://dx.doi.org/10.3390/s21134602.
Der volle Inhalt der QuelleDissertationen zum Thema "Encoded video stream"
Allouche, Mohamed. „Video tracking for marketing applications“. Electronic Thesis or Diss., Institut polytechnique de Paris, 2024. http://www.theses.fr/2024IPPAS033.
Der volle Inhalt der QuelleThe last decades have seen video production and consumption rise significantly: TV/cinematography, social networking, digital marketing, and video surveillance incrementally and cumulatively turned video content into the predilection type of data to be exchanged, stored, and processed. It is thus commonly considered that 80% of the Internet traffic is video, and intensive and holistic efforts for devising lossy video compression solutions are carried out to reach the trade-off between video data size and their visual quality.Under this framework, marketing videos are still dominated by the paid content (that is, content created by the advertiser that pays an announcer for distributing that content). Yet, organic video content is slowly but surely advancing. In a nutshell, the term organic content refers to a content whose creation and/or distribution is not paid. In most cases, it is a user-created content with implicit advertising value, or some advertising content distributed by a user on a social network. In practice, such a content is directly produced by the user devices in compressed format (e.g. the AVC - Advanced Video Coding, HEVC - High efficiency Video Coding or VVC - Versatile Video Coding) and is often shared by other users, on the same or on different social networks, thus creating a virtual chain distribution that is studied by marketing experts.Such an application can be modeled by at least two different scientific methodological and technical frameworks, namely blockchain and video fingerprinting. On the one hand, should we first consider the distribution issues, blockchain seems an appealing solution, as it makes provisions for a secure, decentralized, and transparent solution to track changes of any digital asset. While blockchain already proved its effectiveness in a large variety of content distribution applications, its multimedia related applications stay scarce and rise conceptual contradictions between the strictly limited computing/storage resources available in blockchain and the large amount of data representing the video content as well as the complex operations video processing requires. On the other hand, should we first consider the multimedia content issues, each step of distribution can be considered as a near duplication operation. Thus, the tracking of organic video can be ensured by video fingerprinting that regroups research efforts devoted to identifying duplicated and/or replicated versions of a given video sequence in a reference video dataset. While tracking video content in uncompressed domain is a rich research field, compressed domain video fingerprinting is still underexplored.The present thesis studies the possibility of tracking advertising compressed video content, in the context of its uncontrolled, spontaneous propagation into a distributed network:• video tracking by means of blockchain-based solutions, despite the large amount of data and the computation requirements of video applications, a priori incompatible with nowadays blockchain solutions• effective compressed domain video fingerprinting, even though video compression is supposed to exclude the very visual redundancy that allows video content to be retrieved.• applicative synergies between blockchain and fingerprinting frameworks.The main results consist in the conception, specification and implementation of:• COLLATE, an on-Chain Off-chain Load baLancing ArchiTecturE, thus making it possible for the intimately constrained computing, storage and software resources of any blockchain to be abstractly extended by general-purpose computing machine resources;• COMMON - Compressed dOMain Marketing videO fiNgerprinting, demonstrating the possibility of modelling compressed modeling video fingerprint under deep learning framework• BIDDING - BlockchaIn-baseD viDeo fINgerprintinG, an end-to-end processing pipeline for coupling compressed domain video fingerprinting to the blockchain load balancing solution
Hu, Wan-Hsun, und 胡萬勳. „A Modified H.264 Encoder to Stream Video for Narrowband Networks“. Thesis, 2009. http://ndltd.ncl.edu.tw/handle/46330012096890207087.
Der volle Inhalt der Quelle國立臺灣大學
資訊工程學研究所
97
Public and home safeties are important in human life. For the sake of security, it is necessary to have as many monitors of the surveillance system as possible to monitor specific regions. However, there is usually not sufficient bandwidth of networks to return all video streams, especially in narrowband networks. To solve this issue, we propose a modified H.264 encoder, which uses little bandwidth to transfer more video streams as possible. The key concept is to compress all input video streams into one. Because we just know what happens in specific regions, it is not imperative to store high-quality video. The video should be small size instead of precise. We shrink four observed videos to one-quarter and combine them into one as long as the quality is distinct and smooth enough. This way, it is able to reduce the needed bandwidth and have acceptable quality. Still, each video has different frame rate, it is impossible to get samples in all regions when sampling. We modify the original encoder to improve encoding time when some regions get no sample. Finally, we encode the combined image by using modified H.264 encoder. For evaluations, we compare the needed bandwidth of output generated by our system with that of traditional IP camera which is no scaling and combining on the input files, and the encoding time of modified encoder with that of original encoder. As confirmed by performance evaluations, the proposed modified H.264 encoder with limited hardware cost can achieve excellent performance in term of the bandwidth of transmissions and encoding time.
Buchteile zum Thema "Encoded video stream"
Zhu, Kanghua, Yongfang Wang, Jian Wu, Yun Zhu und Wei Zhang. „Content Oriented Video Quality Prediction for HEVC Encoded Stream“. In Communications in Computer and Information Science, 338–48. Singapore: Springer Singapore, 2017. http://dx.doi.org/10.1007/978-981-10-4211-9_33.
Der volle Inhalt der QuelleSalama, Paul, Ness B. Shroff und Edward J. Delp. „Error Concealment in Encoded Video Streams“. In Signal Recovery Techniques for Image and Video Compression and Transmission, 199–233. Boston, MA: Springer US, 1998. http://dx.doi.org/10.1007/978-1-4757-6514-4_7.
Der volle Inhalt der QuelleYu, Tong, und Nicolas Padoy. „Encode the Unseen: Predictive Video Hashing for Scalable Mid-stream Retrieval“. In Computer Vision – ACCV 2020, 427–42. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-69541-5_26.
Der volle Inhalt der QuelleAbbate, Maurizio, Ciro D’Elia und Paola Mariano. „A Low Complexity Motion Segmentation Based on Semantic Representation of Encoded Video Streams“. In Image Analysis and Processing – ICIAP 2011, 209–18. Berlin, Heidelberg: Springer Berlin Heidelberg, 2011. http://dx.doi.org/10.1007/978-3-642-24088-1_22.
Der volle Inhalt der QuelleLal, Chhagan, Vijay Laxmi und M. S. Gaur. „A Rate Adaptation Scheme to Support QoS for H.264/SVC Encoded Video Streams over MANETs“. In Advanced Communication and Networking, 86–95. Berlin, Heidelberg: Springer Berlin Heidelberg, 2011. http://dx.doi.org/10.1007/978-3-642-23312-8_11.
Der volle Inhalt der Quelle„Encoded Output Delivered as a Bit Stream“,. In A Practical Guide to Video and Audio Compression, 263–76. Routledge, 2005. http://dx.doi.org/10.4324/9780080488066-19.
Der volle Inhalt der QuelleCycon, H. „Mobile Serverless Video Communication“. In Encyclopedia of Mobile Computing and Commerce, 589–95. IGI Global, 2007. http://dx.doi.org/10.4018/978-1-59904-002-8.ch098.
Der volle Inhalt der QuelleLawrence, Linju, und R. Shreelekshmi. „Chained Digital Signature for the Improved Video Integrity Verification“. In Frontiers in Artificial Intelligence and Applications. IOS Press, 2021. http://dx.doi.org/10.3233/faia210284.
Der volle Inhalt der QuelleFleury, Martin, und Laith Al-Jobouri. „Techniques and Tools for Adaptive Video Streaming“. In Intelligent Multimedia Technologies for Networking Applications, 65–101. IGI Global, 2013. http://dx.doi.org/10.4018/978-1-4666-2833-5.ch004.
Der volle Inhalt der QuelleKoumaras, Harilaos, Charalampos Skianis und Anastasios Kourtis. „Analysis and Modeling of H.264 Unconstrained VBR Video Traffic“. In Innovations in Mobile Multimedia Communications and Applications, 227–43. IGI Global, 2011. http://dx.doi.org/10.4018/978-1-60960-563-6.ch016.
Der volle Inhalt der QuelleKonferenzberichte zum Thema "Encoded video stream"
Grzelka, Adam, Adrian Dziembowski, Dawid Mieloch und Marek Domański. „The Study of the Video Encoder Efficiency in Decoder-side Depth Estimation Applications“. In WSCG'2022 - 30. International Conference in Central Europe on Computer Graphics, Visualization and Computer Vision'2022. Západočeská univerzita, 2022. http://dx.doi.org/10.24132/csrn.3201.31.
Der volle Inhalt der QuelleKaminsky, Evgeny, Dan Grois und Ofer Hadar. „Efficient real-time Video-in-Video insertion into a pre-encoded video stream for the H.264/AVC“. In 2010 IEEE International Conference on Imaging Systems and Techniques (IST). IEEE, 2010. http://dx.doi.org/10.1109/ist.2010.5548511.
Der volle Inhalt der QuelleMeddeb, Marwa, Marco Cagnazzo und Beatrice Pesquet-Popescu. „ROI-based rate control using tiles for an HEVC encoded video stream over a lossy network“. In 2015 IEEE International Conference on Image Processing (ICIP). IEEE, 2015. http://dx.doi.org/10.1109/icip.2015.7351028.
Der volle Inhalt der QuelleMu, Mu, Roswitha Gostner, Andreas Mauthe, Gareth Tyson und Francisco Garcia. „Visibility of individual packet loss on H.264 encoded video stream: a user study on the impact of packet loss on perceived video quality“. In IS&T/SPIE Electronic Imaging, herausgegeben von Reza Rejaie und Ketan D. Mayer-Patel. SPIE, 2009. http://dx.doi.org/10.1117/12.815538.
Der volle Inhalt der QuelleRazavi, R., M. Fleury und M. Ghanbari. „Unequal protection of encoded video streams in bluetooth EDR“. In Packet Video 2007. IEEE, 2007. http://dx.doi.org/10.1109/packet.2007.4397049.
Der volle Inhalt der QuelleAntsiferova, Anastasia, Alexander Yakovenko, Nickolay Safonov, Dmitriy Kulikov, Alexander Gushin und Dmitriy Vatolin. „Applying Objective Quality Metrics to Video-Codec Comparisons: Choosing the Best Metric for Subjective Quality Estimation“. In 31th International Conference on Computer Graphics and Vision. Keldysh Institute of Applied Mathematics, 2021. http://dx.doi.org/10.20948/graphicon-2021-3027-199-210.
Der volle Inhalt der QuelleRehbein, Gustavo, Eduardo Costa, Guilherme Corrêa, Cristiano Santos und Marcelo Porto. „A Machine-Learning-Driven Fast Video-based Point Cloud Compression (V-PCC)“. In Proceedings of the Brazilian Symposium on Multimedia and the Web, 20–27. Sociedade Brasileira de Computação - SBC, 2024. http://dx.doi.org/10.5753/webmedia.2024.242069.
Der volle Inhalt der QuelleXin, Jun, Ming-Ting Sun und Kangwook Chun. „Bit-allocation for transcoding pre-encoded video streams“. In Electronic Imaging 2002, herausgegeben von C. C. Jay Kuo. SPIE, 2002. http://dx.doi.org/10.1117/12.453054.
Der volle Inhalt der QuelleCen, Nan, Zhangyu Guan und Tommaso Melodia. „Joint decoding of independently encoded compressive multi-view video streams“. In 2013 Picture Coding Symposium (PCS). IEEE, 2013. http://dx.doi.org/10.1109/pcs.2013.6737753.
Der volle Inhalt der QuelleHong Zhou, Jingli Zhou und Xiaojian Xia. „The motion vector reuse algorithm to improve dual-stream video encoder“. In 2008 9th International Conference on Signal Processing (ICSP 2008). IEEE, 2008. http://dx.doi.org/10.1109/icosp.2008.4697366.
Der volle Inhalt der QuelleBerichte der Organisationen zum Thema "Encoded video stream"
Chen, Yongzhou, Ammar Tahir und Radhika Mittal. Controlling Congestion via In-Network Content Adaptation. Illinois Center for Transportation, September 2022. http://dx.doi.org/10.36501/0197-9191/22-018.
Der volle Inhalt der Quelle