Inhaltsverzeichnis
Auswahl der wissenschaftlichen Literatur zum Thema „Encapsulation for electronic“
Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an
Machen Sie sich mit den Listen der aktuellen Artikel, Bücher, Dissertationen, Berichten und anderer wissenschaftlichen Quellen zum Thema "Encapsulation for electronic" bekannt.
Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.
Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.
Zeitschriftenartikel zum Thema "Encapsulation for electronic"
Winkler, Sebastian, Jan Edelmann, Christine Welsch und Roman Ruff. „Different encapsulation strategies for implanted electronics“. Current Directions in Biomedical Engineering 3, Nr. 2 (07.09.2017): 725–28. http://dx.doi.org/10.1515/cdbme-2017-0153.
Der volle Inhalt der QuelleKulkarni, Romit, Peter Wappler, Mahdi Soltani, Mehmet Haybat, Thomas Guenther, Tobias Groezinger und André Zimmermann. „An Assessment of Thermoset Injection Molding for Thin-Walled Conformal Encapsulation of Board-Level Electronic Packages“. Journal of Manufacturing and Materials Processing 3, Nr. 1 (01.02.2019): 18. http://dx.doi.org/10.3390/jmmp3010018.
Der volle Inhalt der QuelleKinkeldei, Thomas, Niko Munzenrieder, Christoph Zysset, Kunigunde Cherenack und Gerhard Tröster. „Encapsulation for Flexible Electronic Devices“. IEEE Electron Device Letters 32, Nr. 12 (Dezember 2011): 1743–45. http://dx.doi.org/10.1109/led.2011.2168378.
Der volle Inhalt der QuelleKaessner, S., M. G. Scheibel, S. Behrendt, B. Boettge und K. G. Nickel. „Reliability of Novel Ceramic Encapsulation Materials for Electronic Packaging“. International Symposium on Microelectronics 2018, Nr. 1 (01.10.2018): 000425–33. http://dx.doi.org/10.4071/2380-4505-2018.1.000425.
Der volle Inhalt der QuelleKaessner, Stefan, Markus G. Scheibel, Stefan Behrendt, Bianca Boettge, Christoph Berthold und Klaus G. Nickel. „Reliability of Novel Ceramic Encapsulation Materials for Electronic Packaging“. Journal of Microelectronics and Electronic Packaging 15, Nr. 3 (01.07.2018): 132–39. http://dx.doi.org/10.4071/imaps.661015.
Der volle Inhalt der QuelleGuo, Jiahui, Yunru Yu, Dagan Zhang, Han Zhang und Yuanjin Zhao. „Morphological Hydrogel Microfibers with MXene Encapsulation for Electronic Skin“. Research 2021 (03.03.2021): 1–10. http://dx.doi.org/10.34133/2021/7065907.
Der volle Inhalt der QuelleYu, Yong Peng. „Research Progress of Heat Hv Insulation Resistance of Macromolecular Composite Materials“. Advanced Materials Research 391-392 (Dezember 2011): 332–35. http://dx.doi.org/10.4028/www.scientific.net/amr.391-392.332.
Der volle Inhalt der QuelleWong, C. P. „An Overview of Integrated Circuit Device Encapsulants“. Journal of Electronic Packaging 111, Nr. 2 (01.06.1989): 97–107. http://dx.doi.org/10.1115/1.3226528.
Der volle Inhalt der QuelleAhn, Jeong und Kim. „Emerging Encapsulation Technologies for Long-Term Reliability of Microfabricated Implantable Devices“. Micromachines 10, Nr. 8 (31.07.2019): 508. http://dx.doi.org/10.3390/mi10080508.
Der volle Inhalt der QuelleElshabini, Aicha, Fred Barlow, Sharmin Islam und Pin-Jen Wang. „Advanced Devices and Electronic Packaging for Harsh Environment“. International Symposium on Microelectronics 2013, Nr. 1 (01.01.2013): 000937–50. http://dx.doi.org/10.4071/isom-2013-thp61.
Der volle Inhalt der QuelleDissertationen zum Thema "Encapsulation for electronic"
Kaabeche, Nessima. „Transparent high barrier coatings for electronic encapsulation“. Thesis, Manchester Metropolitan University, 2017. http://e-space.mmu.ac.uk/618981/.
Der volle Inhalt der QuellePascarella, Nathan William. „Advanced encapsulation processing for low cost electronics assembly“. Thesis, Georgia Institute of Technology, 1997. http://hdl.handle.net/1853/19031.
Der volle Inhalt der QuelleEvans, Michael 1977. „Encapsulation of electronic components for a retinal prosthesis“. Thesis, Massachusetts Institute of Technology, 2000. http://hdl.handle.net/1721.1/9077.
Der volle Inhalt der QuelleIncludes bibliographical references (p. 65).
Long-term success of an implantable retinal prosthesis depends on the ability to hermetically seal sensitive electronics from a saline environment with an encapsulant material. Furthermore, the retinal implant project's proposed laser-driven prosthesis requires that the encapsulation material be transparent. The device itself has two components that must protrude out of the encapsulation material. The first is an electrode array on a polyimide strip. The second is a platinum return wire. Difficulty in finding encapsulation materials has arisen from saline leakage at the interface of the encapsulant and these two protruding components. This thesis addresses the pursuit of materials and bonding strategies suitable to protect the device in chronic submersion. An electrode array lying on a polyimide layer sits flat against the ganglion cells within the eye. Precise stimulation requires that current does not flow between the individual electrode contacts. The array must be tested under chronic saline submersion to ensure that each electrode remains electrically isolated by the polyimide. The electronics package will be supported in the eye by a modified intraocular platform, similar to a device typically used in human cataract surgery. The lens is created by photolithography, a rapid prototyping technique. This platform must conform to surgical needs and structural integrity required by the device. The primary goal of this thesis is to find a flexible transparent encapsulant material. This material must undergo long term leakage tests to ensure that it will be reliable in protecting the microelectronics mounted on the platform before being considered for use. The secondary goal of the thesis is testing of the polyimide electrode array itself to determine its ability to resist saline leaks.
by Michael Evans.
S.B.and M.Eng.
Teh, Nee-Joo. „Direct polymeric encapsulation of electronic systems for automotive applications“. Thesis, Loughborough University, 2004. https://dspace.lboro.ac.uk/2134/33881.
Der volle Inhalt der QuelleKim, Namsu. „Fabrication and characterization of thin-film encapsulation for organic electronics“. Diss., Atlanta, Ga. : Georgia Institute of Technology, 2009. http://hdl.handle.net/1853/31772.
Der volle Inhalt der QuelleCommittee Chair: Samuel Graham; Committee Member: Bernard Kippelen; Committee Member: David McDowell; Committee Member: Sankar Nair; Committee Member: Suresh Sitaraman. Part of the SMARTech Electronic Thesis and Dissertation Collection.
Zhang, Rong. „Wafer level LED packaging with integrated DRIE trenches for encapsulation /“. View abstract or full-text, 2008. http://library.ust.hk/cgi/db/thesis.pl?MECH%202008%20ZHANGR.
Der volle Inhalt der QuelleBowman, Amy Catherine. „A selective encapsulation solution for packaging an optical micro electro mechanical system“. Link to electronic thesis, 2002. http://www.wpi.edu/Pubs/ETD/Available/etd-0108102-140953.
Der volle Inhalt der QuelleKeywords: packaging; micro electro mechanical systems; MEMS; electronics; die warpage; die bow; encapsulant; encapsulate; electrochemical migration; corrosion; wirebonds. Includes bibliographical references (p. 94-99).
Visweswaran, Bhadri. „Encapsulation of organic light emitting diodes“. Thesis, Princeton University, 2014. http://pqdtopen.proquest.com/#viewpdf?dispub=3665325.
Der volle Inhalt der QuelleOrganic Light Emitting Diodes (OLEDs) are extremely attractive candidates for flexible display and lighting panels due to their high contrast ratio, light weight and flexible nature. However, the materials in an OLED get oxidized by extremely small quantities of atmospheric moisture and oxygen. To obtain a flexible OLED device, a flexible thin-film barrier encapsulation with low permeability for water is necessary.
Water permeates through a thin-film barrier by 4 modes: microcracks, contaminant particles, along interfaces, and through the bulk of the material. We have developed a flexible barrier film made by Plasma Enhanced Chemical Vapor Deposition (PECVD) that is devoid of any microcracks. In this work we have systematically reduced the permeation from the other three modes to come up with a barrier film design for an operating lifetime of over 10 years.
To provide quantitative feedback during barrier material development, techniques for measuring low diffusion coefficient and solubility of water in a barrier material have been developed. The mechanism of water diffusion in the barrier has been identified. From the measurements, we have created a model for predicting the operating lifetime from accelerated tests when the lifetime is limited by bulk diffusion.
To prevent the particle induced water permeation, we have encapsulated artificial particles and have studied their cross section. A three layer thin-film that can coat a particle at thicknesses smaller than the particle diameter is identified. It is demonstrated to protect a bottom emission OLED device that was contaminated with standard sized glass beads.
The photoresist and the organic layers below the barrier film causes sideways permeation that can reduce the lifetime set by permeation through the bulk of the barrier. To prevent the sideways permeation, an impermeable inorganic grid made of the same barrier material is designed. The reduction in sideways permeation due to the impermeable inorganic grid is demonstrated in an encapsulated OLED.
In this work, we have dealt with three permeation mechanisms and shown solution to each of them. These steps give us reliable flexible encapsulation that has a lifetime of greater than 10 years.
Colin, Charlotte. „Synthèse et caractérisation de copolymères Silicone/Polyuréthane réticulés pour l'encapsulation de modules de puissance“. Thesis, Université Paris-Saclay (ComUE), 2017. http://www.theses.fr/2017SACLV028/document.
Der volle Inhalt der QuelleEmbedded electronics, particularly power modules, allows management of electric energy and therefore development of “carbon-free” vehicle. However, these electronic components, will shortly be located near heat engine automotive, and they must withstand various environments and sometimes, hard stresses (humidity, chemical aggression (oil), vibrations…). But actual encapsulation materials are not today efficient enough to match with these future imposed stresses. Thus, the aim of this work is to develop new encapsulation polymers. For this, two types of crosslinked Silicone/Polyurethane (Si/PU) copolymers were “solvent-free” synthesized and with short polymerization times.A first series of materials Si/PU containing between 55 and 76%wt silicone units were synthesized by alcool-iscyanate polyaddition from silicone precursor, synthesized or commercial, and a pluri-isocyanate, in the presence of catalyst. A second series of copolymers, Silicone/Polyhydroxyurethane (Si/PHU) containing 26 and 61%wt silicone units, was obtained without isocyanate or catalyst from poly(dimethylsiloxane) biscyclocarbonate and a triamine.Mechanical and thermal properties as well as hydrophobic character of all materials were evaluated. In order to improve thermal properties and decrease the cost of encapsulation resin, inorganic fillers were blended in some of Si/PU polymers.The most interesting materials were tested as encapsulant in power modules, and the first electrical measurements during thermal cyclings were very promising
Rudy, Veronika. „Technologie zalévání LED pásků epoxidovými hmotami“. Master's thesis, Vysoké učení technické v Brně. Fakulta strojního inženýrství, 2021. http://www.nusl.cz/ntk/nusl-443229.
Der volle Inhalt der QuelleBücher zum Thema "Encapsulation for electronic"
Ardebili, Haleh. Encapsulation technologies for electronic applications. Burlington, MA: William Andrew, 2009.
Den vollen Inhalt der Quelle findenEncapsulation of electronic devices and components. New York: M. Dekker, 1987.
Den vollen Inhalt der Quelle findenEncapsulation Technologies for Electronic Applications. Elsevier - Health Sciences Division, 2018.
Den vollen Inhalt der Quelle findenEncapsulation Technologies for Electronic Applications. Elsevier, 2019. http://dx.doi.org/10.1016/c2016-0-01829-6.
Der volle Inhalt der QuelleBuchteile zum Thema "Encapsulation for electronic"
Su, Wenming. „Encapsulation Technology for Organic Electronic Devices“. In Printed Electronics, 287–315. Singapore: John Wiley & Sons Singapore Pte. Ltd, 2016. http://dx.doi.org/10.1002/9781118920954.ch8.
Der volle Inhalt der QuelleJalar, Azman, Syed Mohamad Mardzukey Syed Mohamed Zain, Fakhrozi Che Ani, Mohamad Riduwan Ramli und Maria Abu Bakar. „Effect of Potting Encapsulation on Crack Formation and Propagation in Electronic Package“. In Advances in Robotics, Automation and Data Analytics, 351–57. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-70917-4_33.
Der volle Inhalt der QuellePyun, Jeffrey, und Todd Emrick. „Polymer Encapsulation of Metallic and Semiconductor Nanoparticles: Multifunctional Materials with Novel Optical, Electronic and Magnetic Properties“. In Macromolecular Engineering, 2409–49. Weinheim, Germany: Wiley-VCH Verlag GmbH & Co. KGaA, 2011. http://dx.doi.org/10.1002/9783527631421.ch58.
Der volle Inhalt der QuelleHackett, Nigel. „Materials for Advanced Encapsulation“. In Plastics for Electronics, 171–99. Dordrecht: Springer Netherlands, 1999. http://dx.doi.org/10.1007/978-94-017-2700-6_6.
Der volle Inhalt der QuelleGoosey, Martin T. „Plastic Encapsulation of Semiconductors by Transfer Moulding“. In Plastics for Electronics, 137–71. Dordrecht: Springer Netherlands, 1985. http://dx.doi.org/10.1007/978-94-009-4942-3_5.
Der volle Inhalt der QuelleCâmara, João, und Helena Sarmento. „AutoCap: An Automatic Tool Encapsulator“. In Electronic Design Automation Frameworks, 35–44. Boston, MA: Springer US, 1995. http://dx.doi.org/10.1007/978-0-387-34880-3_4.
Der volle Inhalt der QuelleEnzel, Patricia, und Thomas Bein. „Encapsulation of Conducting Polymers within Zeolites“. In Lower-Dimensional Systems and Molecular Electronics, 421–26. Boston, MA: Springer US, 1990. http://dx.doi.org/10.1007/978-1-4899-2088-1_49.
Der volle Inhalt der QuelleGoosey, Martin, und Mike Plant. „Recent Developments in the Encapsulation of Semiconductors by Transfer Moulding“. In Plastics for Electronics, 131–69. Dordrecht: Springer Netherlands, 1999. http://dx.doi.org/10.1007/978-94-017-2700-6_5.
Der volle Inhalt der QuelleSchmidt, Christian. „Direct Encapsulation of OLED on CMOS“. In Bio and Nano Packaging Techniques for Electron Devices, 581–99. Berlin, Heidelberg: Springer Berlin Heidelberg, 2012. http://dx.doi.org/10.1007/978-3-642-28522-6_29.
Der volle Inhalt der QuelleLinz, Torsten, René Vieroth, Christian Dils, Mathias Koch, Tanja Braun, Karl Friedrich Becker, Christine Kallmayer und Soon Min Hong. „Embroidered Interconnections and Encapsulation for Electronics in Textiles for Wearable Electronics Applications“. In Smart Textiles, 85–94. Stafa: Trans Tech Publications Ltd., 2008. http://dx.doi.org/10.4028/3-908158-17-6.85.
Der volle Inhalt der QuelleKonferenzberichte zum Thema "Encapsulation for electronic"
Kaabeche, Nessima, P. J. Kelly und L. Harland. „Transparent High Barrier Coating for Electronic Encapsulation“. In Society of Vacuum Coaters Annual Technical Conference. Society of Vacuum Coaters, 2015. http://dx.doi.org/10.14332/svc15.proc.1959.
Der volle Inhalt der QuelleDing, Peng, Renhui Liu, Yu Chen, Guanqiang Song und Guanhua Li. „Study on encapsulation reliability“. In 2014 15th International Conference on Electronic Packaging Technology (ICEPT). IEEE, 2014. http://dx.doi.org/10.1109/icept.2014.6922768.
Der volle Inhalt der QuelleYoung, S. J., D. Janssen, E. A. Wenzel, B. M. Shadakofsky und F. A. Kulacki. „Electronics cooling with onboard conformal encapsulation“. In 2016 15th IEEE Intersociety Conference on Thermal and Thermomechanical Phenomena in Electronic Systems (ITherm). IEEE, 2016. http://dx.doi.org/10.1109/itherm.2016.7517557.
Der volle Inhalt der QuelleFranck, Laurent, und Rosalba Suffritti. „Multiple Alert Message Encapsulation over Satellite“. In Electronic Systems Technology (Wireless VITAE). IEEE, 2009. http://dx.doi.org/10.1109/wirelessvitae.2009.5172503.
Der volle Inhalt der QuelleRayadhyaksha, Mangesh, und Gordon Sullivan. „The importance of adhesion for electronic module encapsulation“. In 2007 Electrical Insulation Conference and Electrical Manufacturing Expo (EIC/EME). IEEE, 2007. http://dx.doi.org/10.1109/eeic.2007.4562648.
Der volle Inhalt der QuellePark, Woo-Tae, Rob N. Candler, Huimou J. Li, Junghwa Cho, Holden Li, Thomas W. Kenny, Aaron Partridge, Gary Yama und Markus Lutz. „Wafer Scale Encapsulation of MEMS Devices“. In ASME 2003 International Electronic Packaging Technical Conference and Exhibition. ASMEDC, 2003. http://dx.doi.org/10.1115/ipack2003-35032.
Der volle Inhalt der QuelleAbbadi, Mohamed, Francesco Di Giacomo, Agostino Cortesi, Pieter Spronck, Costantini Giulia, Giuseppe Maggiore und Hogeschool Rotterdam. „High performance encapsulation in Casanova 2“. In 2015 7th Computer Science and Electronic Engineering (CEEC). IEEE, 2015. http://dx.doi.org/10.1109/ceec.2015.7332725.
Der volle Inhalt der QuelleLall, Pradeep, Padmanava Choudhury, Jinesh Narangaparambil und Scott Miller. „Flexible Encapsulation Process-Property Relationships for Flexible Hybrid Electronics“. In 2021 IEEE 71st Electronic Components and Technology Conference (ECTC). IEEE, 2021. http://dx.doi.org/10.1109/ectc32696.2021.00237.
Der volle Inhalt der QuelleBoeser, Fabian, Juan S. Ordonez, Martin Schuettler, Thomas Stieglitz und Dennis T. T. Plachta. „Non-hermetic encapsulation for implantable electronic devices based on epoxy“. In 2015 37th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC). IEEE, 2015. http://dx.doi.org/10.1109/embc.2015.7318485.
Der volle Inhalt der QuelleBraun, T., K. F. Becker, M. Koch, V. Bader, D. Manessis, A. Neumann, A. Ostmann, R. Aschenbrenner und H. Reichl. „Wafer level encapsulation for system in package generation“. In 26th International Spring Seminar on Electronics Technology: Integrated Management of Electronic Materials Production, 2003. IEEE, 2003. http://dx.doi.org/10.1109/isse.2003.1260582.
Der volle Inhalt der QuelleBerichte der Organisationen zum Thema "Encapsulation for electronic"
Rogers, John. Inorganic Substrates and Encapsulation Layers for Transient Electronics. Fort Belvoir, VA: Defense Technical Information Center, Juli 2014. http://dx.doi.org/10.21236/ada607424.
Der volle Inhalt der Quelle