Inhaltsverzeichnis
Auswahl der wissenschaftlichen Literatur zum Thema „Emulsion droplets“
Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an
Machen Sie sich mit den Listen der aktuellen Artikel, Bücher, Dissertationen, Berichten und anderer wissenschaftlichen Quellen zum Thema "Emulsion droplets" bekannt.
Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.
Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.
Zeitschriftenartikel zum Thema "Emulsion droplets"
Bromley, Keith M., und Cait E. MacPhee. „BslA-stabilized emulsion droplets with designed microstructure“. Interface Focus 7, Nr. 4 (16.06.2017): 20160124. http://dx.doi.org/10.1098/rsfs.2016.0124.
Der volle Inhalt der QuelleYong, Ah Pis, Md Aminul Islam und Nurul Hasan. „The Effect of pH and High-Pressure Homogenization on Droplet Size“. International Journal of Engineering Materials and Manufacture 2, Nr. 4 (10.12.2017): 110–22. http://dx.doi.org/10.26776/ijemm.02.04.2017.05.
Der volle Inhalt der QuelleSilva, T. M., N. N. P. Cerize und A. M. Oliveira. „The Effect of High Shear Homogenization on Physical Stability of Emulsions“. International Journal of Chemistry 8, Nr. 4 (28.09.2016): 52. http://dx.doi.org/10.5539/ijc.v8n4p52.
Der volle Inhalt der QuelleLi, Chun, Jian Ouyang, Fangjie Dou und Jingtao Shi. „Mechanism Influencing the Drying Behavior of Bitumen Emulsion“. Materials 14, Nr. 14 (12.07.2021): 3878. http://dx.doi.org/10.3390/ma14143878.
Der volle Inhalt der QuelleJiang, Tianyi, Yankai Jia, Haizhen Sun, Xiaokang Deng, Dewei Tang und Yukun Ren. „Dielectrophoresis Response of Water-in-Oil-in-Water Double Emulsion Droplets with Singular or Dual Cores“. Micromachines 11, Nr. 12 (17.12.2020): 1121. http://dx.doi.org/10.3390/mi11121121.
Der volle Inhalt der QuelleSpicer, Patrick T., und Richard W. Hartel. „Crystal Comets: Dewetting During Emulsion Droplet Crystallization“. Australian Journal of Chemistry 58, Nr. 9 (2005): 655. http://dx.doi.org/10.1071/ch05119.
Der volle Inhalt der QuelleZheng, Hongxia, Like Mao, Jingyi Yang, Chenyu Zhang, Song Miao und Yanxiang Gao. „Effect of Oil Content and Emulsifier Type on the Properties and Antioxidant Activity of Sea Buckthorn Oil-in-Water Emulsions“. Journal of Food Quality 2020 (13.01.2020): 1–8. http://dx.doi.org/10.1155/2020/1540925.
Der volle Inhalt der QuelleFingas, Merv. „OIL SPILL DISPERSION STABILITY AND OIL RE-SURFACING“. International Oil Spill Conference Proceedings 2008, Nr. 1 (01.05.2008): 661–65. http://dx.doi.org/10.7901/2169-3358-2008-1-661.
Der volle Inhalt der QuelleXu, Ke, Peixi Zhu, Tatiana Colon, Chun Huh und Matthew Balhoff. „A Microfluidic Investigation of the Synergistic Effect of Nanoparticles and Surfactants in Macro-Emulsion-Based Enhanced Oil Recovery“. SPE Journal 22, Nr. 02 (23.09.2016): 459–69. http://dx.doi.org/10.2118/179691-pa.
Der volle Inhalt der QuelleJarzębski, Maciej, Przemysław Siejak, Wojciech Smułek, Farahnaz Fathordoobady, Yigong Guo, Jarosław Pawlicz, Tomasz Trzeciak et al. „Plant Extracts Containing Saponins Affects the Stability and Biological Activity of Hempseed Oil Emulsion System“. Molecules 25, Nr. 11 (10.06.2020): 2696. http://dx.doi.org/10.3390/molecules25112696.
Der volle Inhalt der QuelleDissertationen zum Thema "Emulsion droplets"
Wilking, Connie Chang. „Viral encapsulation of emulsion and nanoemulsion droplets“. Diss., Restricted to subscribing institutions, 2008. http://proquest.umi.com/pqdweb?did=1692370451&sid=4&Fmt=2&clientId=1564&RQT=309&VName=PQD.
Der volle Inhalt der QuelleSachdev, Suchanuch. „Emulsion droplets as reactors for assembling nanoparticles“. Thesis, Loughborough University, 2018. https://dspace.lboro.ac.uk/2134/36206.
Der volle Inhalt der QuellePatel, Vishal M. „Synthesis of calcium carbonate coated emulsion droplets for drug detoxification“. [Gainesville, Fla.] : University of Florida, 2002. http://purl.fcla.edu/fcla/etd/UFE1001175.
Der volle Inhalt der QuellePangu, Gautam D. „ACOUSTICALLY AIDED COALESCENCE OF DROPLETS IN AQUEOUS EMULSIONS“. Case Western Reserve University School of Graduate Studies / OhioLINK, 2006. http://rave.ohiolink.edu/etdc/view?acc_num=case1138379076.
Der volle Inhalt der QuelleNagelberg, Sara(Sara Nicole). „Dynamic and stimuli-responsive multi-phase emulsion droplets for optical components“. Thesis, Massachusetts Institute of Technology, 2020. https://hdl.handle.net/1721.1/127708.
Der volle Inhalt der QuelleThesis: Ph. D., Massachusetts Institute of Technology, Department of Mechanical Engineering, 2020
Cataloged from student-submitted PDF of thesis.
Includes bibliographical references (pages 136-143).
Dynamic micro-optical components have revolutionized imaging, sensing, and display technologies. Multi-phase emulsions are micro-scale droplets formed from multiple immiscible material components suspended in a fluid medium. An interesting aspect of these droplets is that by tailoring the chemistry of the surrounding medium it is possible to control the droplet morphology or to render the droplets responsive to stimuli in the environment, including light, heat, specific molecules, or even bacteria. This thesis explores the optical characteristics of multi-phase droplets, including their refractive, emissive, and reflective properties. This work focuses predominantly on bi-phase droplets formed from two immiscible oils in water, which form double emulsions or Janus droplets. As tunable refractive components, these droplets form dynamic compound micro-lenses with adjustable focal length that is continuously variable from converging lenses to diverging lenses.
Macroscopically these refractive droplets can appear nearly transparent or strongly scattering, depending on their configurations. When a fluorescent dye is dispersed within the higher refractive index phase, a portion of the light emitted will undergo total internal reflection. This results in a strong morphology-dependent angular emission profile, which can be used in molecular sensing for chemicals or pathogens. In reflection, the droplets produce striking iridescent colors. This is due to the interference light being totally internally reflected at the internal interface along distinct optical paths, leading to color. These optical characteristics are analyzed both experimentally and theoretically. Finite Difference Time Domain simulations were used to model wave-optical effects and phenomena that could be treated using geometrical optics were calculated using a custom-built ray tracing algorithm.
Additionally, a theoretical model was developed to explain the iridescent colors, under a geometric approximation that takes into account interference effects. Experimentally the droplets were characterized using several different custom-built microscope setups. Beyond the optical characteristics, we used these setups to investigate the effects of thermal Marangoni flows within the droplets, which cause the droplets to re-orient towards a heat source. This work sets the foundation of understanding the refractive, reflective, and emissive properties of multi-phase droplets, which could form the basis of dynamically controllable or stimuli-responsive micro-scale optical components.
by Sara Nagelberg.
Ph. D.
Ph.D. Massachusetts Institute of Technology, Department of Mechanical Engineering
Wang, Yiwei. „Coalescence and disproportionation of air bubbles stabilized by proteins and emulsion droplets“. Thesis, University of Leeds, 2008. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.496337.
Der volle Inhalt der QuelleLange, Tobias. „Precipitation in confined droplets - development of microfluidic and imogolite Pickering emulsion approaches“. Thesis, Université Paris-Saclay (ComUE), 2019. http://www.theses.fr/2019SACLV069.
Der volle Inhalt der QuelleIn the industrial production of pigments, catalysts, plant protection agents, nuclear fuel and pharmaceuticals precipitation and crystallization plays a fundamental role. Although these processes are often applied and a relative control over the formed solids can be achieved, the processes are not always well understood on a microscopic level. To identify how the solids are formed and which mechanisms govern their formation potentially gives the capabilities to better control such processes.In this thesis two different approaches are explored to study precipitation and crystallization by confining reactions into droplets. The first approach focuses on the combination of a droplet microfluidic device and in-situ small angle X-ray scattering. Off-stochiomestry thiol-ene-epoxy polymer is characterized for the use with in-situ X-ray scattering and a protocol is presented to prepare suitable microfluidic devices from this material. An original approach to isolate the scattering signal of the carrier phase and the droplets is then used to study the precipitation of cerium oxalate in droplets. The second approach aims to use imogolite nanotubes to stabilize droplets against coalescence and to study their transport properties to control reactant feeding into droplets. By fully characterizing the necessary surface modification by alkylphosphonic acids for the first time, evidence is found that the reaction does not yield surface modified tubes. Consequentially, new approaches are explored to obtain individually dispersed imogolite nanotubes with a hydrophobic surface
Lattin, James R. „Ultrasound-Induced Phase Change of Emulsion Droplets for Targeted Gene and Drug Delivery“. BYU ScholarsArchive, 2012. https://scholarsarchive.byu.edu/etd/3377.
Der volle Inhalt der QuelleHart, Helen Mary. „A study of the interaction between oil-in-water emulsion droplets and polymer particles“. Thesis, University of Bristol, 1992. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.296451.
Der volle Inhalt der QuelleLacava, Johann Verfasser], und Eduard [Akademischer Betreuer] [Arzt. „Assembly of gold nanoparticles into regular clusters inside emulsion droplets / Johann Lacava. Betreuer: Eduard Arzt“. Saarbrücken : Saarländische Universitäts- und Landesbibliothek, 2015. http://d-nb.info/1064868533/34.
Der volle Inhalt der QuelleBücher zum Thema "Emulsion droplets"
Nagelberg, Sara. Dynamic and Stimuli-Responsive Multi-Phase Emulsion Droplets for Optical Components. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-53460-8.
Der volle Inhalt der QuelleAveyard, Bob. Surfactants. Oxford University Press, 2019. http://dx.doi.org/10.1093/oso/9780198828600.001.0001.
Der volle Inhalt der QuelleCates, M. Complex fluids: the physics of emulsions. Oxford University Press, 2017. http://dx.doi.org/10.1093/oso/9780198789352.003.0010.
Der volle Inhalt der QuelleBuchteile zum Thema "Emulsion droplets"
Nagelberg, Sara. „Thermal Actuation of Bi-Phase Droplets“. In Dynamic and Stimuli-Responsive Multi-Phase Emulsion Droplets for Optical Components, 71–82. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-53460-8_5.
Der volle Inhalt der QuelleNagelberg, Sara. „Emissive Bi-Phase Droplets as Pathogen Sensors“. In Dynamic and Stimuli-Responsive Multi-Phase Emulsion Droplets for Optical Components, 33–43. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-53460-8_3.
Der volle Inhalt der QuelleNagelberg, Sara. „Multi-Phase Droplets as Dynamic Compound Micro-Lenses“. In Dynamic and Stimuli-Responsive Multi-Phase Emulsion Droplets for Optical Components, 13–31. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-53460-8_2.
Der volle Inhalt der QuellePatel, Vishal M., Piyush Sheth, Allison Kurz, Michael Ossenbeck, Dinesh O. Shah und Laurie B. Gower. „Synthesis of Calcium Carbonate-Coated Emulsion Droplets for Drug Detoxification“. In ACS Symposium Series, 15–25. Washington, DC: American Chemical Society, 2004. http://dx.doi.org/10.1021/bk-2004-0878.ch002.
Der volle Inhalt der QuelleMatsumura, Y., H. Sakamoto, M. Motoki und T. Mori. „Filler Effects of Oil Droplets on Physical Properties of Emulsion Gels“. In Food Hydrocolloids, 409–14. Boston, MA: Springer US, 1994. http://dx.doi.org/10.1007/978-1-4615-2486-1_63.
Der volle Inhalt der QuelleNagelberg, Sara. „Introduction“. In Dynamic and Stimuli-Responsive Multi-Phase Emulsion Droplets for Optical Components, 1–11. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-53460-8_1.
Der volle Inhalt der QuelleNagelberg, Sara. „Structural Color from Interference of Light Undergoing Total Internal Reflection at Concave Interfaces“. In Dynamic and Stimuli-Responsive Multi-Phase Emulsion Droplets for Optical Components, 45–69. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-53460-8_4.
Der volle Inhalt der QuelleNagelberg, Sara. „Summary and Outlook“. In Dynamic and Stimuli-Responsive Multi-Phase Emulsion Droplets for Optical Components, 83–84. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-53460-8_6.
Der volle Inhalt der QuellePiacentini, Emma, Alessandra Imbrogno und Lidietta Giorno. „Nanostructured Sensing Emulsion Droplets and Particles: Properties and Formulation by Membrane Emulsification“. In Smart Membranes and Sensors, 367–400. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2014. http://dx.doi.org/10.1002/9781119028642.ch13.
Der volle Inhalt der QuelleVendel, Kim J. A., Celine Alkemade, Nemo Andrea, Gijsje H. Koenderink und Marileen Dogterom. „In Vitro Reconstitution of Dynamic Co-organization of Microtubules and Actin Filaments in Emulsion Droplets“. In Methods in Molecular Biology, 53–75. New York, NY: Springer US, 2019. http://dx.doi.org/10.1007/978-1-0716-0219-5_5.
Der volle Inhalt der QuelleKonferenzberichte zum Thema "Emulsion droplets"
Yang, Haixia, Steven R. Schmid, Ronald A. Reich und Thomas J. Kasum. „Direct Observations of Emulsion Flow in EHL Contacts“. In World Tribology Congress III. ASMEDC, 2005. http://dx.doi.org/10.1115/wtc2005-63074.
Der volle Inhalt der QuelleChen, Jerry M., und Ming-Che Kuo. „Generation and Control of Droplet in Cross Microchannel Flow With a Converging-Diverging Nozzle Shaped Section“. In ASME 2010 10th Biennial Conference on Engineering Systems Design and Analysis. ASMEDC, 2010. http://dx.doi.org/10.1115/esda2010-24102.
Der volle Inhalt der QuelleNguyen, Nam-Trung, Say-Hwa Tan und Jing Liu. „Magnetically Mediated Formation of Ferrofluid Emulsion“. In ASME 2011 9th International Conference on Nanochannels, Microchannels, and Minichannels. ASMEDC, 2011. http://dx.doi.org/10.1115/icnmm2011-58212.
Der volle Inhalt der QuelleKovaleva, Liana, Ayrat Musin, Rasul Zinnatullin und Iskander S. Akhatov. „Destruction of Water-in-Oil Emulsions in Electromagnetic Fields“. In ASME 2011 International Mechanical Engineering Congress and Exposition. ASMEDC, 2011. http://dx.doi.org/10.1115/imece2011-62935.
Der volle Inhalt der QuelleLi, Xiaoyi, und Kausik Sarkar. „Rheological Aspects of Drops Deforming in Finite Reynolds Number Oscillatory Extensional Flows“. In ASME 2004 Heat Transfer/Fluids Engineering Summer Conference. ASMEDC, 2004. http://dx.doi.org/10.1115/ht-fed2004-56648.
Der volle Inhalt der QuelleNeves, Marcos A., Isao Kobayashi und Mitsutoshi Nakajima. „Scaling-Up Microchannel Emulsification Foreseeing Novel Bioactives Delivery Systems“. In ASME 2013 11th International Conference on Nanochannels, Microchannels, and Minichannels. American Society of Mechanical Engineers, 2013. http://dx.doi.org/10.1115/icnmm2013-73116.
Der volle Inhalt der QuelleMa, Liran, Jianbin Luo und Chenhui Zhang. „Behavior of O/W Emulsion Under Point Contact“. In ASME/STLE 2012 International Joint Tribology Conference. American Society of Mechanical Engineers, 2012. http://dx.doi.org/10.1115/ijtc2012-61091.
Der volle Inhalt der QuelleAkhmetov, Alfir T., Marat V. Mavletov, Sergey P. Sametov, Artur A. Rakhimov, Azat A. Valiev und Iskander S. Akhatov. „Dispersion Flow in Microchannels“. In ASME 2012 International Mechanical Engineering Congress and Exposition. American Society of Mechanical Engineers, 2012. http://dx.doi.org/10.1115/imece2012-86618.
Der volle Inhalt der QuelleGuo, Kai, Yuling Lv, Limin He, Xiaoming Luo und Donghai Yang. „Investigation on Corrosion Base Characteristics and Deep Dehydration Technology of Micro-Droplets in Oil Pipelines“. In ASME 2019 Asia Pacific Pipeline Conference. American Society of Mechanical Engineers, 2019. http://dx.doi.org/10.1115/appc2019-7617.
Der volle Inhalt der QuelleCho, Young-Sang, Gi-Ra Yi, Seung-Man Yang, Young-Kuk Kim und Chul-Jin Choi. „Self-assembly of bimodal particles inside emulsion droplets“. In SPIE NanoScience + Engineering, herausgegeben von Oleg V. Prezhdo. SPIE, 2010. http://dx.doi.org/10.1117/12.861029.
Der volle Inhalt der QuelleBerichte der Organisationen zum Thema "Emulsion droplets"
Dagata, John A., Natalia Farkas und John A. Kramer. Method for Measuring the Volume of Nominally 100 μm Diameter Spherical Water-in-Oil Emulsion Droplets. National Institute of Standards and Technology, Februar 2016. http://dx.doi.org/10.6028/nist.sp.260-184.
Der volle Inhalt der Quelle