Inhaltsverzeichnis
Auswahl der wissenschaftlichen Literatur zum Thema „Empreinte laser“
Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an
Machen Sie sich mit den Listen der aktuellen Artikel, Bücher, Dissertationen, Berichten und anderer wissenschaftlichen Quellen zum Thema "Empreinte laser" bekannt.
Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.
Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.
Dissertationen zum Thema "Empreinte laser"
Liotard, Romain. „Étude de la transition solide-plasma du polystyrène et de son influence sur les simulations de fusion par confinement inertiel en attaque directe“. Electronic Thesis or Diss., Bordeaux, 2024. http://www.theses.fr/2024BORD0222.
Der volle Inhalt der QuelleDirect drive inertial confinement fusion (ICF) is a method considered for achieving nuclear fusion reactions by irradiating a target with multiple high-intensity laser pulses. This target is a sphere made of a solid material called an ablator (usually polystyrene), which surrounds a fusion fuel (usually cryogenic deuterium-tritium (DT)). The energy delivered by the laser irradiation causes the ejection of the ablator and the implosion of the target due to the rocket effect. The mechanical work exerted on the hotspot (the center of the target) during the implosion is expected to trigger fusion reactions. Currently, the radiative hydrodynamic codes used to simulate ICF implosions generally assume that the ablator is initially in a plasma state, although it is actually in a solid state. This solid state could play a role during the initial interaction between the lasers and the target. Due to the initial transparency of the ablator, the laser can penetrate the target, leading to the "shine-through" effect, which can modify the laser energy deposition and potentially alter the dynamics of the shocks propagating within the target. Additionally, changes in the laser imprint can influence the evolution of hydrodynamic instabilities during the implosion.The objective of this thesis is to develop a solid-to-plasma transition model for polystyrene based on existing models, that can be integrated into hydrodynamic simulation codes for ICF. To achieve this, the model needed to be adapted to the specific constraints of these codes, taking into account the dependencies of the model on the evolution of all hydrodynamic quantities, and optimizing the numerical costs to avoid an excessive increase in simulation time. The integration of these modifications required experimental validation of the model, which was carried out through an experiment on the GCLT laser at CEA-DIF, measuring the evolution of the transmittance of a polystyrene sheet irradiated by a laser pulse. The results showed a good correlation between simulations and experimental measurements, confirming the validity of the new coupled model. This model was then used to study the potential effects of the initial solid state on direct drive ICF simulations. The results revealed that accounting for the solid-to-plasma transition influences the growth of hydrodynamic instabilities. Specifically, we observed a reduction in low spatial frequency instabilities for targets with a thick ablator, and a general increase in high spatial frequency instabilities due to the non-linearity of the solid-to-plasma transition phenomenon
Lone, Imtiaz Nisar. „High Resolution study of NF-kB - DNA Interactions“. Phd thesis, Ecole normale supérieure de lyon - ENS LYON, 2013. http://tel.archives-ouvertes.fr/tel-00947251.
Der volle Inhalt der QuelleBashtova, Kateryna. „Modélisation et identification de paramètres pour les empreintes des faisceaux de haute énergie“. Thesis, Université Côte d'Azur (ComUE), 2016. http://www.theses.fr/2016AZUR4112/document.
Der volle Inhalt der QuelleThe technological progress demands more and more sophisticated and precise techniques of the treatment of materials. We study the machining of the material with the high energy beams: the abrasive waterjet, the focused ion beam and the laser. Although the physics governing the energy beam interaction with material is very different for different application, we can use the same approach to the mathematical modeling of these processes.The evolution of the material surface under the energy beam impact is modeled by PDE equation. This equation contains a set of unknown parameters - the calibration parameters of the model. The unknown parameters can be identified by minimization of the cost function, i.e., function that describes the differ- ence between the result of modeling and the corresponding experimental data. As the modeled surface is a solution of the PDE problem, this minimization is an example of PDE-constrained optimization problem. The identification problem was regularized using Tikhonov regularization. The gradient of the cost function was obtained both by using the variational approach and by means of the automatic differentiation. Once the cost function and its gradient calculated, the minimization was performed using L-BFGS minimizer.For the abrasive waterjet application the problem of non-uniqueness of numerical solution is solved. The impact of the secondary effects non included into the model is avoided as well. The calibration procedure is validated on both synthetic and experimental data.For the laser application, we presented a simple criterion that allows to distinguish between the thermal and non-thermal laser ablation regimes
Chia, Gomez Laura Piedad. „Elaboration et caractérisation de matériaux fonctionnels pour la stereolithographie biphotonique“. Thesis, Mulhouse, 2017. http://www.theses.fr/2017MULH9153.
Der volle Inhalt der QuelleThe two-photon stereolithography (TPS) technique is a micro-nanofabrication method based on photopolymerization by two-photon absorption that allows in a single manufacturing step to obtain complex 3D structures with high-resolution details (sub-100nm). Due to the specific conditions of TPS process (intense photon flux, spatial confinement of the photoreaction…) one of the main concerns today is the development of functional materials compatible with the TPS. According to the aforementioned, the general objective of this thesis was to develop new functional materials based on molecularly imprinted polymers (MIP) to elaborate chemical microsensors. In the first step of this work, different methods were implemented to characterize the geometrical, chemical and mechanical properties of the materials synthesized by TPS. For example, laser-Doppler vibrometry was used for first time to evaluate the mechanical properties of microstructures fabricated by TPS in a non-invasive way. In the second step, the characterization methodology was used to study the impact of the manufacturing process (i.e. photonic conditions) and the physicochemical parameters that affect the photoreaction (i.e. oxygen inhibition and the nature of the monomer) and the final properties of the materials. Finally, the obtained results enabled the prototyping of chemical microsensors based on MIP. Their molecular recognition properties and their selectivity were demonstrated for the molecule (D-L-Phe) by an optical and a mechanical sensing method
Lauzon, Nidia. „Imagerie moléculaire d’empreintes digitales par spectrométrie de masse : potentiels et applications en science forensique“. Thèse, 2018. http://hdl.handle.net/1866/21579.
Der volle Inhalt der Quelle