Zeitschriftenartikel zum Thema „EMOLIS Dataset“
Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an
Machen Sie sich mit Top-50 Zeitschriftenartikel für die Forschung zum Thema "EMOLIS Dataset" bekannt.
Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.
Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.
Sehen Sie die Zeitschriftenartikel für verschiedene Spezialgebieten durch und erstellen Sie Ihre Bibliographie auf korrekte Weise.
Saadi, Wafa, Fatima Zohra Laallam, Messaoud Mezati, Dikra Louiza Youmbai und Nour Elhouda Messaoudi. „Enhancing emotion detection on Twitter: an ensemble clustering approach utilizing emojis and keywords across multilingual datasets“. STUDIES IN ENGINEERING AND EXACT SCIENCES 5, Nr. 2 (13.11.2024): e10548. http://dx.doi.org/10.54021/seesv5n2-522.
Der volle Inhalt der QuelleCzęstochowska, Justyna, Kristina Gligorić, Maxime Peyrard, Yann Mentha, Michał Bień, Andrea Grütter, Anita Auer, Aris Xanthos und Robert West. „On the Context-Free Ambiguity of Emoji“. Proceedings of the International AAAI Conference on Web and Social Media 16 (31.05.2022): 1388–92. http://dx.doi.org/10.1609/icwsm.v16i1.19393.
Der volle Inhalt der QuelleArjun Kuruva und Dr. C. Nagaraju. „A Robust Hybrid Model for Text and Emoji Sentiment Analysis: Leveraging BERT and Pre-trained Emoji Embeddings“. Bioscan 20, Nr. 1 (24.01.2025): 186–91. https://doi.org/10.63001/tbs.2025.v20.i01.pp186-191.
Der volle Inhalt der QuelleNakonechnyi, O. G., O. A. Kapustian, Iu M. Shevchuk, M. V. Loseva und O. Yu Kosukha. „A intellectual system of analysis of reactions to news based on data from Telegram channels“. Bulletin of Taras Shevchenko National University of Kyiv. Series: Physics and Mathematics, Nr. 3 (2022): 55–61. http://dx.doi.org/10.17721/1812-5409.2022/3.7.
Der volle Inhalt der QuellePeng, Jiao, Yue He, Yongjuan Chang, Yanyan Lu, Pengfei Zhang, Zhonghong Ou und Qingzhi Yu. „A Social Media Dataset and H-GNN-Based Contrastive Learning Scheme for Multimodal Sentiment Analysis“. Applied Sciences 15, Nr. 2 (10.01.2025): 636. https://doi.org/10.3390/app15020636.
Der volle Inhalt der QuelleHauthal, Eva, Alexander Dunkel und Dirk Burghardt. „Emojis as Contextual Indicants in Location-Based Social Media Posts“. ISPRS International Journal of Geo-Information 10, Nr. 6 (12.06.2021): 407. http://dx.doi.org/10.3390/ijgi10060407.
Der volle Inhalt der QuelleAlmalki, Jameel. „A machine learning-based approach for sentiment analysis on distance learning from Arabic Tweets“. PeerJ Computer Science 8 (26.07.2022): e1047. http://dx.doi.org/10.7717/peerj-cs.1047.
Der volle Inhalt der QuelleMadderi Sivalingam, Saravanan, Smitha Ponnaiyan Sarojam, Malathi Subramanian und Kalachelvi Thulasingam. „A new mining and decoding framework to predict expression of opinion on social media emoji’s using machine learning models“. IAES International Journal of Artificial Intelligence (IJ-AI) 13, Nr. 4 (01.12.2024): 5005. http://dx.doi.org/10.11591/ijai.v13.i4.pp5005-5012.
Der volle Inhalt der QuelleAnu Kiruthika M. und Angelin Gladston. „Implementation of Recurrent Network for Emotion Recognition of Twitter Data“. International Journal of Social Media and Online Communities 12, Nr. 1 (Januar 2020): 1–13. http://dx.doi.org/10.4018/ijsmoc.2020010101.
Der volle Inhalt der QuelleChen, Zhenpeng, Yanbin Cao, Huihan Yao, Xuan Lu, Xin Peng, Hong Mei und Xuanzhe Liu. „Emoji-powered Sentiment and Emotion Detection from Software Developers’ Communication Data“. ACM Transactions on Software Engineering and Methodology 30, Nr. 2 (März 2021): 1–48. http://dx.doi.org/10.1145/3424308.
Der volle Inhalt der QuelleTang, Hongmei, Wenzhong Tang, Dixiongxiao Zhu, Shuai Wang, Yanyang Wang und Lihong Wang. „EMFSA: Emoji-based multifeature fusion sentiment analysis“. PLOS ONE 19, Nr. 9 (19.09.2024): e0310715. http://dx.doi.org/10.1371/journal.pone.0310715.
Der volle Inhalt der QuelleHusain, Fatemah, und Ozlem Uzuner. „Investigating the Effect of Preprocessing Arabic Text on Offensive Language and Hate Speech Detection“. ACM Transactions on Asian and Low-Resource Language Information Processing 21, Nr. 4 (31.07.2022): 1–20. http://dx.doi.org/10.1145/3501398.
Der volle Inhalt der QuelleYang, Senqi, Xuliang Duan, Zeyan Xiao, Zhiyao Li, Yuhai Liu, Zhihao Jie, Dezhao Tang und Hui Du. „Sentiment Classification of Chinese Tourism Reviews Based on ERNIE-Gram+GCN“. International Journal of Environmental Research and Public Health 19, Nr. 20 (19.10.2022): 13520. http://dx.doi.org/10.3390/ijerph192013520.
Der volle Inhalt der QuelleAl-Mutawa, Rihab Fahd, und Arwa Yousef Al-Aama. „User Opinion Prediction for Arabic Hotel Reviews Using Lexicons and Artificial Intelligence Techniques“. Applied Sciences 13, Nr. 10 (12.05.2023): 5985. http://dx.doi.org/10.3390/app13105985.
Der volle Inhalt der QuelleKulkongkoon, Theerawee, Nagul Cooharojananone und Rajalida Lipikorn. „Emoji’s sentiment score estimation using convolutional neural network with multi-scale emoji images“. International Journal of Electrical and Computer Engineering (IJECE) 14, Nr. 1 (01.02.2024): 698. http://dx.doi.org/10.11591/ijece.v14i1.pp698-710.
Der volle Inhalt der QuelleBalcıoğlu, Yavuz Selim, Yelda Özkoçak, Yağmur Gümüşboğa und Erkut Altındağ. „From Symbols to Emojis: Analyzing Visual Communication Trends on Social Media“. Studies in Media and Communication 13, Nr. 2 (19.03.2025): 250. https://doi.org/10.11114/smc.v13i2.7509.
Der volle Inhalt der QuelleKoltsova, Elena A., und Faina I. Kartashkova. „Digital Communication and Multimodal Features: Functioning of Emoji in Interpersonal Communication“. RUDN Journal of Language Studies, Semiotics and Semantics 13, Nr. 3 (30.09.2022): 769–83. http://dx.doi.org/10.22363/2313-2299-2022-13-3-769-783.
Der volle Inhalt der QuelleAlturayeif, Nora, und Hamzah Luqman. „Fine-Grained Sentiment Analysis of Arabic COVID-19 Tweets Using BERT-Based Transformers and Dynamically Weighted Loss Function“. Applied Sciences 11, Nr. 22 (12.11.2021): 10694. http://dx.doi.org/10.3390/app112210694.
Der volle Inhalt der QuelleVimala, Dhulepalla. „Detection of Fake Online Reviews Using Semi Supervised and Supervised Learning“. INTERANTIONAL JOURNAL OF SCIENTIFIC RESEARCH IN ENGINEERING AND MANAGEMENT 08, Nr. 04 (25.04.2024): 1–5. http://dx.doi.org/10.55041/ijsrem31613.
Der volle Inhalt der QuelleAlawneh, Hussam, Ahmad Hasasneh und Mohammed Maree. „On the Utilization of Emoji Encoding and Data Preprocessing with a Combined CNN-LSTM Framework for Arabic Sentiment Analysis“. Modelling 5, Nr. 4 (07.10.2024): 1469–89. http://dx.doi.org/10.3390/modelling5040076.
Der volle Inhalt der QuelleN, Bagiyalakshmi, und A. C. Kothandaraman. „Optimized Deep Learning Model for Sentimental Analysis to Improve Consumer Experience in E-Commerce Websites“. Journal of Computer Allied Intelligence 2, Nr. 3 (30.06.2024): 41–54. http://dx.doi.org/10.69996/jcai.2024014.
Der volle Inhalt der QuelleKong, Jeffery T. H., Filbert H. Juwono, Ik Ying Ngu, I. Gde Dharma Nugraha, Yan Maraden und W. K. Wong. „A Mixed Malay–English Language COVID-19 Twitter Dataset: A Sentiment Analysis“. Big Data and Cognitive Computing 7, Nr. 2 (27.03.2023): 61. http://dx.doi.org/10.3390/bdcc7020061.
Der volle Inhalt der QuelleJi, Houjun. „Depression Detection on Twitter Text Based on Negative Emotion Score and Level of Depressed“. Highlights in Science, Engineering and Technology 81 (26.01.2024): 368–73. http://dx.doi.org/10.54097/ensgdz34.
Der volle Inhalt der QuelleArcenal, Erika Kristine E., Licca Pauleen V. Capistrano, Marielle Jessie D. De Guzman, Micaela Isabel M. Forrosuelo und Janeson M. Miranda. „Comparative Analysis of Reddit Posts and ChatGPT-Generated Texts’ Linguistic Features: A Short Report on Artificial Intelligence’s Imitative Capabilities“. International Journal of Multidisciplinary: Applied Business and Education Research 5, Nr. 9 (23.09.2024): 3475–81. http://dx.doi.org/10.11594/ijmaber.05.09.06.
Der volle Inhalt der QuelleNikhil,, Navneet. „Hate Speech Detection“. INTERANTIONAL JOURNAL OF SCIENTIFIC RESEARCH IN ENGINEERING AND MANAGEMENT 08, Nr. 05 (27.05.2024): 1–5. http://dx.doi.org/10.55041/ijsrem34783.
Der volle Inhalt der QuelleVayadande, Kuldeep, Aditya Bodhankar, Ajinkya Mahajan, Diksha Prasad, Shivani Mahajan, Aishwarya Pujari und Riya Dhakalkar. „Classification of Depression on social media using Distant Supervision“. ITM Web of Conferences 50 (2022): 01005. http://dx.doi.org/10.1051/itmconf/20225001005.
Der volle Inhalt der QuelleKim, Ye-Hyun, Jungwon Cho und Jaechoon Jo. „Development of Real-time Soccer Match Comment Sentiment Analysis and Emoji Conversion System“. International Journal on Advanced Science, Engineering and Information Technology 14, Nr. 6 (25.12.2024): 2114–20. https://doi.org/10.18517/ijaseit.14.6.11792.
Der volle Inhalt der QuellePravin D. Kaware. „Indo-HateSpeech Analysis: A Multi-Level Hate Speech Classification Framework Using BERT Features and Machine Learning Models“. Advances in Nonlinear Variational Inequalities 28, Nr. 5s (24.01.2025): 405–18. https://doi.org/10.52783/anvi.v28.3912.
Der volle Inhalt der QuelleSudeep K. Hase. „Sentiment Classification on Multivariate Feature Selection on Social Media dataset using Hybrid Machine Learning Techniques“. Journal of Information Systems Engineering and Management 10, Nr. 1s (30.12.2024): 525–39. https://doi.org/10.52783/jisem.v10i1s.234.
Der volle Inhalt der QuelleCerrahoğlu, Enes, und Pınar Cihan. „Sentiment Analysis and Emojification of Tweets“. International Conference on Pioneer and Innovative Studies 1 (13.06.2023): 481–86. http://dx.doi.org/10.59287/icpis.876.
Der volle Inhalt der QuelleFadhli, Imen, Lobna Hlaoua und Mohamed Nazih Omri. „Sentiment Analysis CSAM Model to Discover Pertinent Conversations in Twitter Microblogs“. International Journal of Computer Network and Information Security 14, Nr. 5 (08.10.2022): 28–46. http://dx.doi.org/10.5815/ijcnis.2022.05.03.
Der volle Inhalt der QuelleZbiri, Asmae, Azeddine Hachmi, Dominique Haesen und Fatima Ezzahrae El Alaoui-Faris. „New Investigation and Challenge for Spatiotemporal Drought Monitoring Using Bottom-Up Precipitation Dataset (SM2RAIN-ASCAT) and NDVI in Moroccan Arid and Semi-Arid Rangelands“. Ekológia (Bratislava) 41, Nr. 1 (01.03.2022): 90–100. http://dx.doi.org/10.2478/eko-2022-0010.
Der volle Inhalt der QuelleMayor, Eric, und Lucas M. Bietti. „Twitter, time and emotions“. Royal Society Open Science 8, Nr. 5 (Mai 2021): 201900. http://dx.doi.org/10.1098/rsos.201900.
Der volle Inhalt der QuelleDolot, Dyea, und Arlene Opina. „Forms and Functions of Graphicons in Facebook Private Conversations Among Young Filipino Users“. International Journal of Linguistics, Literature and Translation 4, Nr. 6 (30.06.2021): 62–73. http://dx.doi.org/10.32996/ijllt.2021.4.6.8.
Der volle Inhalt der QuelleHachmi, Azeddine, Asmae Zbiri, Dominique Haesen, Fatima Ezzahrae El Alaoui-Faris und David A. Vaccari. „Performance Tests to Modeling Future Climate–vegetation Interactions in Virtual World: an Option for Application of Remote Sensed and Statistical Systems“. WSEAS TRANSACTIONS ON INFORMATION SCIENCE AND APPLICATIONS 18 (31.12.2021): 178–89. http://dx.doi.org/10.37394/23209.2021.18.22.
Der volle Inhalt der QuelleAlshaabi, Thayer, Jane L. Adams, Michael V. Arnold, Joshua R. Minot, David R. Dewhurst, Andrew J. Reagan, Christopher M. Danforth und Peter Sheridan Dodds. „Storywrangler: A massive exploratorium for sociolinguistic, cultural, socioeconomic, and political timelines using Twitter“. Science Advances 7, Nr. 29 (Juli 2021): eabe6534. http://dx.doi.org/10.1126/sciadv.abe6534.
Der volle Inhalt der QuelleAribowo, Agus Sasmito, und Siti Khomsah. „Implementation Of Text Mining For Emotion Detection Using The Lexicon Method (Case Study: Tweets About Covid-19)“. Telematika 18, Nr. 1 (16.03.2021): 49. http://dx.doi.org/10.31315/telematika.v18i1.4341.
Der volle Inhalt der QuelleHemanth, Bollepalli Sri Sai. „Whatsapp Chat Analyzer Using Machine Learning“. INTERANTIONAL JOURNAL OF SCIENTIFIC RESEARCH IN ENGINEERING AND MANAGEMENT 08, Nr. 04 (18.04.2024): 1–5. http://dx.doi.org/10.55041/ijsrem31024.
Der volle Inhalt der QuelleFadlan Amrullah und Achmad Solichin. „Analisis Emosi Pada Live Chat Youtube 'Mata Najwa: 3 Bacapres Bicara Gagasan' Menggunakan Pendekatan Lexicon dan Algoritma Naive Bayes“. Jurnal Ticom: Technology of Information and Communication 12, Nr. 3 (31.05.2024): 121–28. http://dx.doi.org/10.70309/ticom.v12i3.132.
Der volle Inhalt der QuelleHe, Jiabei. „Analyzing film and drama reviews: Distinguishing trolls from genuine audience feedback based on the BERT model“. Applied and Computational Engineering 53, Nr. 1 (28.03.2024): 213–19. http://dx.doi.org/10.54254/2755-2721/53/20241376.
Der volle Inhalt der QuelleBao, Yuchen, Hongyi Huang und Zizhou Meng. „Sentiment analysis based on BiLSTM with attention mechanism on Chinese comment with stickers“. Applied and Computational Engineering 38, Nr. 1 (22.01.2024): 26–34. http://dx.doi.org/10.54254/2755-2721/38/20230525.
Der volle Inhalt der QuelleBeseiso, Majdi. „Word and Character Information Aware Neural Model for Emotional Analysis“. Recent Patents on Computer Science 12, Nr. 2 (25.02.2019): 142–47. http://dx.doi.org/10.2174/2213275911666181119112645.
Der volle Inhalt der QuelleMazza Zago, Ricardo, und Luciane Agnoletti dos Santos Pedotti. „BERTugues: A Novel BERT Transformer Model Pre-trained for Brazilian Portuguese“. Semina: Ciências Exatas e Tecnológicas 45 (20.12.2024): e50630. https://doi.org/10.5433/1679-0375.2024.v45.50630.
Der volle Inhalt der QuelleOlaniyan, Deborah, Roseline Oluwaseun Ogundokun, Olorunfemi Paul Bernard, Julius Olaniyan, Rytis Maskeliūnas und Hakeem Babalola Akande. „Utilizing an Attention-Based LSTM Model for Detecting Sarcasm and Irony in Social Media“. Computers 12, Nr. 11 (14.11.2023): 231. http://dx.doi.org/10.3390/computers12110231.
Der volle Inhalt der QuelleKumar, K. Dileep. „Multilingual Hate Speech Detection Using NLP Techniques“. INTERANTIONAL JOURNAL OF SCIENTIFIC RESEARCH IN ENGINEERING AND MANAGEMENT 09, Nr. 03 (04.03.2025): 1–9. https://doi.org/10.55041/ijsrem42063.
Der volle Inhalt der QuelleWylie, Michelle. „Culture and paralinguistic features ~!^^:-): East meets West in a virtual exchange between South Korea and England“. Journal of Virtual Exchange 3 (SI-IVEC2019) (02.12.2020): 49–67. http://dx.doi.org/10.21827/jve.3.35807.
Der volle Inhalt der QuelleBavkar, Dnyaneshwar Madhukar, Ramgopal Kashyap und Vaishali Khairnar. „Multimodal Sarcasm Detection via Hybrid Classifier with Optimistic Logic“. Journal of Telecommunications and Information Technology 3, Nr. 2022 (29.09.2022): 97–114. http://dx.doi.org/10.26636/jtit.2022.161622.
Der volle Inhalt der QuelleAgarkar, Priyanshu T., Pranav Chopdekar, Sahil Gujar und Komal Chitnis. „SenseWorth – A Tweets Classifier“. International Journal for Research in Applied Science and Engineering Technology 10, Nr. 12 (31.12.2022): 1040–48. http://dx.doi.org/10.22214/ijraset.2022.48056.
Der volle Inhalt der QuelleXU, CAIMING, SILEI SUI, Keisuke Okuno, Silvia Pascual-Sabater, Cristina Fillat und Ajay Goel. „Abstract 3821: Berberine and emodin synergistically suppress the EGFR signaling cascade by targeting LAMB3 in pancreatic ductal adenocarcinoma“. Cancer Research 83, Nr. 7_Supplement (04.04.2023): 3821. http://dx.doi.org/10.1158/1538-7445.am2023-3821.
Der volle Inhalt der QuelleYang, Tao, Ziyu Liu, Yu Lu und Jun Zhang. „Centrifugal Navigation-Based Emotion Computation Framework of Bilingual Short Texts with Emoji Symbols“. Electronics 12, Nr. 15 (03.08.2023): 3332. http://dx.doi.org/10.3390/electronics12153332.
Der volle Inhalt der Quelle