Inhaltsverzeichnis
Auswahl der wissenschaftlichen Literatur zum Thema „EMOLIS Dataset“
Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an
Machen Sie sich mit den Listen der aktuellen Artikel, Bücher, Dissertationen, Berichten und anderer wissenschaftlichen Quellen zum Thema "EMOLIS Dataset" bekannt.
Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.
Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.
Zeitschriftenartikel zum Thema "EMOLIS Dataset"
Saadi, Wafa, Fatima Zohra Laallam, Messaoud Mezati, Dikra Louiza Youmbai und Nour Elhouda Messaoudi. „Enhancing emotion detection on Twitter: an ensemble clustering approach utilizing emojis and keywords across multilingual datasets“. STUDIES IN ENGINEERING AND EXACT SCIENCES 5, Nr. 2 (13.11.2024): e10548. http://dx.doi.org/10.54021/seesv5n2-522.
Der volle Inhalt der QuelleCzęstochowska, Justyna, Kristina Gligorić, Maxime Peyrard, Yann Mentha, Michał Bień, Andrea Grütter, Anita Auer, Aris Xanthos und Robert West. „On the Context-Free Ambiguity of Emoji“. Proceedings of the International AAAI Conference on Web and Social Media 16 (31.05.2022): 1388–92. http://dx.doi.org/10.1609/icwsm.v16i1.19393.
Der volle Inhalt der QuelleArjun Kuruva und Dr. C. Nagaraju. „A Robust Hybrid Model for Text and Emoji Sentiment Analysis: Leveraging BERT and Pre-trained Emoji Embeddings“. Bioscan 20, Nr. 1 (24.01.2025): 186–91. https://doi.org/10.63001/tbs.2025.v20.i01.pp186-191.
Der volle Inhalt der QuelleNakonechnyi, O. G., O. A. Kapustian, Iu M. Shevchuk, M. V. Loseva und O. Yu Kosukha. „A intellectual system of analysis of reactions to news based on data from Telegram channels“. Bulletin of Taras Shevchenko National University of Kyiv. Series: Physics and Mathematics, Nr. 3 (2022): 55–61. http://dx.doi.org/10.17721/1812-5409.2022/3.7.
Der volle Inhalt der QuellePeng, Jiao, Yue He, Yongjuan Chang, Yanyan Lu, Pengfei Zhang, Zhonghong Ou und Qingzhi Yu. „A Social Media Dataset and H-GNN-Based Contrastive Learning Scheme for Multimodal Sentiment Analysis“. Applied Sciences 15, Nr. 2 (10.01.2025): 636. https://doi.org/10.3390/app15020636.
Der volle Inhalt der QuelleHauthal, Eva, Alexander Dunkel und Dirk Burghardt. „Emojis as Contextual Indicants in Location-Based Social Media Posts“. ISPRS International Journal of Geo-Information 10, Nr. 6 (12.06.2021): 407. http://dx.doi.org/10.3390/ijgi10060407.
Der volle Inhalt der QuelleAlmalki, Jameel. „A machine learning-based approach for sentiment analysis on distance learning from Arabic Tweets“. PeerJ Computer Science 8 (26.07.2022): e1047. http://dx.doi.org/10.7717/peerj-cs.1047.
Der volle Inhalt der QuelleMadderi Sivalingam, Saravanan, Smitha Ponnaiyan Sarojam, Malathi Subramanian und Kalachelvi Thulasingam. „A new mining and decoding framework to predict expression of opinion on social media emoji’s using machine learning models“. IAES International Journal of Artificial Intelligence (IJ-AI) 13, Nr. 4 (01.12.2024): 5005. http://dx.doi.org/10.11591/ijai.v13.i4.pp5005-5012.
Der volle Inhalt der QuelleAnu Kiruthika M. und Angelin Gladston. „Implementation of Recurrent Network for Emotion Recognition of Twitter Data“. International Journal of Social Media and Online Communities 12, Nr. 1 (Januar 2020): 1–13. http://dx.doi.org/10.4018/ijsmoc.2020010101.
Der volle Inhalt der QuelleChen, Zhenpeng, Yanbin Cao, Huihan Yao, Xuan Lu, Xin Peng, Hong Mei und Xuanzhe Liu. „Emoji-powered Sentiment and Emotion Detection from Software Developers’ Communication Data“. ACM Transactions on Software Engineering and Methodology 30, Nr. 2 (März 2021): 1–48. http://dx.doi.org/10.1145/3424308.
Der volle Inhalt der QuelleDissertationen zum Thema "EMOLIS Dataset"
Lerch, Soëlie. „Suggestion de dessins animés par similarité émotionnelle : Approches neuronales multimodales combinant contenus et données physiologiques“. Electronic Thesis or Diss., Toulon, 2024. http://www.theses.fr/2024TOUL0005.
Der volle Inhalt der QuelleThe general framework of this thesis related to the study of feelings and emotions to better understand their impacts and interactions, thereby improving human-machine communication. An author can convey feelings and emotions in a written message or through a video and its characters. These emotions and feelings are then interpreted by a reader or a viewer, who, in turn, experiences emotions. Identifying these emotions is subjective and not always easy. For example, was a viewer surprised? Were they scared? Or both? How can we find videos that would allow them to feel the same emotions again? To address such questions, our contributions leverage various modalities in a computational analysis—considering both the communication medium's content and the physiological reactions of recipients—to detect and identify emotions and to suggest emotionally similar content.Our first research question concerns the modeling of feelings and emotions to create efficient models for sentiment and emotion detection. To this end, we study different data representations for emotion prediction by utilizing only the textual modality. Various supervised approaches are implemented, which do not require lexicons.Since the textual modality alone can be ambiguous, we examine different data representations for emotion prediction from a multimodal perspective. For this purpose, we create the EMOLIS Dataset, consisting of cartoons annotated with emotions and accompanied by viewers' physiological signals. On one hand, we use the text modality to capture semantic content via dialogue transcription, the image modality for characters' facial expressions, and the audio modality for characters' voices. On the other hand, we utilize physiological signals such as electrocardiograms, respiration, and eye movements of viewers. These different modalities allow us to consider both the emotion conveyed by the video content and the emotions experienced by viewers.Then, we use this dataset to evaluate different models for identifying emotions contained within the EMOLIS Dataset. Two approaches are experimented with, depending on whether representations of modalities are merged late or early in the classification process.Finally, we analyze the impact of incorporating emotions and feelings into cartoon recommendations. We describe the EMOLIS App software, which suggests cartoons from the EMOLIS Dataset. This suggestion is based on calculating similarities between emotional and multimodal matrices as well as physiological signals.In the future, EMOLIS App could potentially be used in cognitive-behavioral therapies for individuals on the autism spectrum who may have difficulty identifying and verbalizing their emotions
Buchteile zum Thema "EMOLIS Dataset"
Gupta, Shelley, Archana Singh und Jayanthi Ranjan. „An Online Document Emoji-Based Classification Using Twitter Dataset“. In Proceedings of Data Analytics and Management, 409–17. Singapore: Springer Singapore, 2021. http://dx.doi.org/10.1007/978-981-16-6285-0_33.
Der volle Inhalt der QuelleMartín Gascón, Beatriz. „Chapter 11. Irony in American-English tweets“. In Current Issues in Linguistic Theory, 197–217. Amsterdam: John Benjamins Publishing Company, 2024. http://dx.doi.org/10.1075/cilt.366.11mar.
Der volle Inhalt der QuelleDas, Ankit, und Saubhik Bandyopadhyay. „Analysis of Oversampling and Its Impact on an Imbalanced Dataset for Emoji Prediction from Tweets Using Machine Learning Techniques“. In Lecture Notes in Networks and Systems, 297–308. Singapore: Springer Nature Singapore, 2025. https://doi.org/10.1007/978-981-97-8476-9_21.
Der volle Inhalt der QuelleHartman, Ryan, S. M. Mahdi Seyednezhad, Diego Pinheiro, Josemar Faustino und Ronaldo Menezes. „Entropy in Network Community as an Indicator of Language Structure in Emoji Usage: A Twitter Study Across Various Thematic Datasets“. In Studies in Computational Intelligence, 328–37. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-030-05411-3_27.
Der volle Inhalt der QuelleAnu Kiruthika M. und Angelin Gladston. „Implementation of Recurrent Network for Emotion Recognition of Twitter Data“. In Research Anthology on Implementing Sentiment Analysis Across Multiple Disciplines, 398–411. IGI Global, 2022. http://dx.doi.org/10.4018/978-1-6684-6303-1.ch022.
Der volle Inhalt der QuelleDoan, Minh Tri, Minh Phuong Dam, Tram T. Doan, Hung Nguyen und Binh T. Nguyen. „Sentiment Classification in Mobile Gaming Reviews: Customized Transformer Models with Emojis Retained“. In Frontiers in Artificial Intelligence and Applications. IOS Press, 2024. http://dx.doi.org/10.3233/faia240384.
Der volle Inhalt der QuelleWhitney, Jessica, Marisa Hultgren, Murray Eugene Jennex, Aaron Elkins und Eric Frost. „Using Knowledge Management and Machine Learning to Identify Victims of Human Sex Trafficking“. In Knowledge Management, Innovation, and Entrepreneurship in a Changing World, 360–89. IGI Global, 2020. http://dx.doi.org/10.4018/978-1-7998-2355-1.ch014.
Der volle Inhalt der QuelleGeethanjali, R., und Dr A. Valarmathi. „SENTIMENT FUSION: LEVERAGING BIG DATA AND DEEP LEARNING FOR MULTIMODAL SENTIMENT ANALYSIS IN SOCIAL NETWORKS“. In Futuristic Trends in Computing Technologies and Data Sciences Volume 3 Book 3, 193–206. Iterative International Publisher, Selfypage Developers Pvt Ltd, 2024. http://dx.doi.org/10.58532/v3bfct3p5ch1.
Der volle Inhalt der QuelleKonferenzberichte zum Thema "EMOLIS Dataset"
Ghafourian, Sarvenaz, Ramin Sharifi und Amirali Baniasadi. „Facial Emotion Recognition in Imbalanced Datasets“. In 9th International Conference on Artificial Intelligence and Applications (AIAPP 2022). Academy and Industry Research Collaboration Center (AIRCC), 2022. http://dx.doi.org/10.5121/csit.2022.120920.
Der volle Inhalt der QuelleKosti, Ronak, Jose M. Alvarez, Adria Recasens und Agata Lapedriza. „EMOTIC: Emotions in Context Dataset“. In 2017 IEEE Conference on Computer Vision and Pattern Recognition Workshops (CVPRW). IEEE, 2017. http://dx.doi.org/10.1109/cvprw.2017.285.
Der volle Inhalt der QuelleHayati, Shirley Anugrah, Aditi Chaudhary, Naoki Otani und Alan W. Black. „Dataset Analysis and Augmentation for Emoji-Sensitive Irony Detection“. In Proceedings of the 5th Workshop on Noisy User-generated Text (W-NUT 2019). Stroudsburg, PA, USA: Association for Computational Linguistics, 2019. http://dx.doi.org/10.18653/v1/d19-5527.
Der volle Inhalt der QuelleHakami, Shatha Ali A., Robert Hendley und Phillip Smith. „ArSarcasMoji Dataset: The Emoji Sentiment Roles in Arabic Ironic Contexts“. In Proceedings of ArabicNLP 2023. Stroudsburg, PA, USA: Association for Computational Linguistics, 2023. http://dx.doi.org/10.18653/v1/2023.arabicnlp-1.18.
Der volle Inhalt der QuelleZhang, Tianlin, Kailai Yang, Shaoxiong Ji, Boyang Liu, Qianqian Xie und Sophia Ananiadou. „SuicidEmoji: Derived Emoji Dataset and Tasks for Suicide-Related Social Content“. In SIGIR 2024: The 47th International ACM SIGIR Conference on Research and Development in Information Retrieval. New York, NY, USA: ACM, 2024. http://dx.doi.org/10.1145/3626772.3657852.
Der volle Inhalt der QuelleCui, Chenye, Yi Ren, Jinglin Liu, Feiyang Chen, Rongjie Huang, Ming Lei und Zhou Zhao. „EMOVIE: A Mandarin Emotion Speech Dataset with a Simple Emotional Text-to-Speech Model“. In Interspeech 2021. ISCA: ISCA, 2021. http://dx.doi.org/10.21437/interspeech.2021-1148.
Der volle Inhalt der QuelleJandre, Frederico, Gabriel Motta Ribeiro und João Vitor Silva. „Could large language models estimate valence of words? A small ablation study“. In Congresso Brasileiro de Inteligência Computacional. SBIC, 2023. http://dx.doi.org/10.21528/cbic2023-148.
Der volle Inhalt der QuelleKirk, Hannah, Bertie Vidgen, Paul Rottger, Tristan Thrush und Scott Hale. „Hatemoji: A Test Suite and Adversarially-Generated Dataset for Benchmarking and Detecting Emoji-Based Hate“. In Proceedings of the 2022 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies. Stroudsburg, PA, USA: Association for Computational Linguistics, 2022. http://dx.doi.org/10.18653/v1/2022.naacl-main.97.
Der volle Inhalt der QuelleKeinan, Ron, Dan Bouhnik und Efraim A Margalit. „Emotional Analysis in Hebrew Texts: Enhancing Machine Learning with Psychological Feature Lexicons [Abstract]“. In InSITE 2024: Informing Science + IT Education Conferences. Informing Science Institute, 2024. http://dx.doi.org/10.28945/5279.
Der volle Inhalt der Quelle