Inhaltsverzeichnis
Auswahl der wissenschaftlichen Literatur zum Thema „Emergency gate closure“
Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an
Machen Sie sich mit den Listen der aktuellen Artikel, Bücher, Dissertationen, Berichten und anderer wissenschaftlichen Quellen zum Thema "Emergency gate closure" bekannt.
Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.
Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.
Zeitschriftenartikel zum Thema "Emergency gate closure"
Holder, Graham K. „Sault Ste. Marie Lock reconstruction: hydraulic model studies of the stop log emergency closure and lock filling and emptying systems“. Canadian Journal of Civil Engineering 25, Nr. 6 (01.12.1998): 1003–40. http://dx.doi.org/10.1139/l98-033.
Der volle Inhalt der QuelleJohnson, Michael C., M. Leslie Boyd und Dustin G. Mortensen. „Closure to “Stop Logs for Emergency Spillway Gate Dewatering” by Derek R. Freckleton, Michael C. Johnson, M. Leslie Boyd, and Dustin G. Mortensen“. Journal of Hydraulic Engineering 138, Nr. 6 (Juni 2012): 578. http://dx.doi.org/10.1061/(asce)hy.1943-7900.0000556.
Der volle Inhalt der QuelleYap, Christopher Michael, Youki Kadobayashi und Suguru Yamaguchi. „Conceptualizing Player-Side Emergence in Interactive Games“. International Journal of Gaming and Computer-Mediated Simulations 7, Nr. 3 (Juli 2015): 1–21. http://dx.doi.org/10.4018/ijgcms.2015070101.
Der volle Inhalt der QuelleNie, Yan-hua, Ling-min Liao und Guo-bing Huang. „Research on emergency control mode of sluice gates in water delivery canal“. MATEC Web of Conferences 246 (2018): 01005. http://dx.doi.org/10.1051/matecconf/201824601005.
Der volle Inhalt der QuelleKong, Lingzhong, Xiaohui Lei, Qian Yang, Hezhen zheng und Hao Wang. „Automatic feedback control algorithm for canal for a quick upstream water supply interruption in the case of an emergency“. MATEC Web of Conferences 246 (2018): 02026. http://dx.doi.org/10.1051/matecconf/201824602026.
Der volle Inhalt der QuelleKoken, Mete, Ismail Aydin und Akis Sahin. „Application of computational fluid dynamics to predict hydrodynamic downpull on high head gates“. Engineering Computations 34, Nr. 4 (12.06.2017): 1191–203. http://dx.doi.org/10.1108/ec-04-2016-0137.
Der volle Inhalt der QuelleFanani, Ahwan. „Al-Suyutî Dan Kontroversi Strata Ijtihâd: Telaah atas Klaim Mujtahid Mutlaq al-Suyutî dan Landasan Normatifnya“. ISLAMICA: Jurnal Studi Keislaman 2, Nr. 2 (22.01.2014): 109. http://dx.doi.org/10.15642/islamica.2008.2.2.109-123.
Der volle Inhalt der QuelleFaurot-Daniels, Ellen R., Julie T. Yamamoto, Randy H. Imai und Susan A. Klasing. „California Marine Oil Spill Fisheries Closure: Key Processes of the Department of Fish and Game (DFG), Office of Spill Prevention and Response (OSPR), During a Fisheries Closure Event“. International Oil Spill Conference Proceedings 2011, Nr. 1 (01.03.2011): abs101. http://dx.doi.org/10.7901/2169-3358-2011-1-101.
Der volle Inhalt der QuelleZhang, Zi-Xin, Liang Wang und Ying-Ming Wang. „An Emergency Decision Making Method for Different Situation Response Based on Game Theory and Prospect Theory“. Symmetry 10, Nr. 10 (11.10.2018): 476. http://dx.doi.org/10.3390/sym10100476.
Der volle Inhalt der QuelleBrusotti, Marco. „“What belongs to a language game is a whole culture.”“. Wittgenstein-Studien 9, Nr. 1 (21.02.2018): 51–73. http://dx.doi.org/10.1515/witt-2018-0005.
Der volle Inhalt der QuelleDissertationen zum Thema "Emergency gate closure"
Pulle, Doreen. „Investigation of the sudden air release up the airshaft of the Berg river dam bottom outlet structure during emergency gate closure using numerical modelling methods“. Stellenbosch : Stellenbosch University, 2011. http://hdl.handle.net/10019.1/17798.
Der volle Inhalt der QuelleENGLISH ABSTRACT: The design of the Berg River Dam bottom outlet structure with multitude draw offs was based on various hydraulic model tests on a 1:40 model that was used for original design and a 1 in 20 physical model which was used to produce the final design. These tests indicated no foreseeable malfunction and showed that the 1.8 m² air vent would provide sufficient air flow to minimize the negative pressures that would develop behind the emergency gate during its closure or opening. However, during the first trial commissioning of the dam outlet structure, air was unexpectedly expelled through the air vent at a velocity so high that the recta-grids covering the shaft were blown to a height of over 3m while the gate was closing at a rate of approximately 0.0035 m/s. The air flow velocity up the air vent was approximately 45m/s and occurred when the gate was approximately 78% closed. A brief report on the test indicated that the source of air may have been a vortex formation in the vertical intake tower upstream of the emergency gate entraining air which was drawn through the gate and released up the air vent. The purpose of this research was to utilize 3-dimensional numerical modelling employing Computational Fluid Dynamics (CFD) to carry out numerical simulations to investigate the above mentioned malfunction and thereby establishing whether the given hypotheses for the malfunction were valid. For purposes of validating the CFD modelling, a 1:14.066 physical model was constructed at the University of Stellenbosch hydraulics laboratory. The 3-dimensional CFD model was used to investigate the said incident, using steady state simulations that were run for various openings of the emergency gate. The intenetion was to establish whether there was an emergency gate opening which would reproduce the air release phenomenon. The results obtained from the numerical model showed a similar trend to those of the physical model although there were differences in values. Neither model, showed a sudden release of air through the vent. It was concluded that the unsteady air-water flow out of the air vent may have been caused by the variation of the discharge with time causing unbalanced negative pressures in the outlet structure. Therefore, it was recommended that further CFD transient simulations should be undertaken incorporating a moving emergency gate.
AFRIKAANSE OPSOMMING: Die ontwerp van die bodemuitlaat van die Bergrivierdam met multivlakuitlate is gebaseer op verskeie hidrouliese modeltoetse op a 1:40 fisiese model wat vir die oorspronklike ontwerp gebruik is, asook „n 1 tot 20 fisisiese model wat gebruik is om die finale ontwerp te lewer in 2003. Hierdie toetse het geen beduidende afwykings aangedui nie en het bewys dat die 1.8mª lugskag voldoende lugvloei sal toevoer om die negatiewe drukking wat stroomaf van die noodsluis ontstaan gedurende die sluitingsproses, sal minimaliseer. Gedurende die inlywingtoets in die veld in 2008 van die noodsluis, is lug onverwags teen 'n hoë snelheid deur die lugskag opwaarts uitgelaat, wat die rooster wat die skag beskerm teen 'n hoogte van oor 3m geblaas het terwyl die sluis teen 'n tempo van ongeveer 0.0035 m/s toegemaak het. Die lugvloeisnelheid in die lugskag was ongeveer 45m/s en het plaasgevind toe die sluis ongeveer 78% toe was. 'n Kort verslag oor die veldtoets dui aan dat die bron van die lug dalk werwelvorming in die vertikale inlaattoring stroomop van die noodsluis was, met lug wat deur die sluis getrek was en opwaarts in die lugskag vrygelaat is. Die doel van die navorsing was om drie-dimensionele numeriese modellering met rekenaar vloeidinamika (RVD) te benut om numeriese similasies uit te voer om die bogenoemde abnormale werking van die lugskag te ondersoek en daarmee vas te stel of die gegewe aannames van krag is. Vir die doel om die RVD modellering te verifieer is 'n 1:14.066 fisiese model gebou by die Universiteit van Stellenbosch se waterlaboratorium. Die 3-dimensionele RVD model is gebruik om die genoemde probleem te ondersoek, deur stasionêre simulasies wat vir verskillende openinge van die noodsluis geloop is te gebruik. Die doel was om vas te stel of daar 'n spesifieke noodsluisopening is wat die vrylating van die lug veroorsaak het. Die uitslag verkry deur die numeriese model het dieselfde windrigting soos die van die fisiese model gewys, alhoewel daar verskille in die waardes was. Nie een van die modelle het .n skielike vrystelling van lug deur die lugskag gewys nie. 'n Afleiding is gemaak dat die nie stasionêre lug-water vloei uit die lugskag moontlik veroorsaak was deur die verandering van die vloei met tyd veroorsaak deur ongebalanseerde negatiewe druk in die uitlaatstruktuur. Daarom is daar voorgestel dat verdere RVD nie stasionêre simulasies gedoen word met 'n bewegende noodsluis.
Málek, Miroslav. „Nestacionární CFD simulace toku uzavírajícím se tabulovým uzávěrem“. Master's thesis, Vysoké učení technické v Brně. Fakulta strojního inženýrství, 2021. http://www.nusl.cz/ntk/nusl-444633.
Der volle Inhalt der QuelleBücher zum Thema "Emergency gate closure"
United States. Bureau of Reclamation., Hrsg. Emergency closures of guard gates with unbalanced heads: High-pressure slide gates. Denver, Colo: U.S. Bureau of Reclamation, 1993.
Den vollen Inhalt der Quelle findenBuchteile zum Thema "Emergency gate closure"
Piecka, Debra C. Burkey, und Manetta Calinger. „Using a Live Simulation to Teach Human Anatomy and the Diagnostic Process to High School Students“. In Advances in Game-Based Learning, 307–25. IGI Global, 2016. http://dx.doi.org/10.4018/978-1-4666-9629-7.ch015.
Der volle Inhalt der QuelleDavies, Peter N. „A Guide to the Emergence of Japan's Modern Shipping Industries“. In International Merchant Shipping in the Nineteenth and Twentieth Centuries. Liverpool University Press, 2008. http://dx.doi.org/10.5949/liverpool/9780973893472.003.0004.
Der volle Inhalt der QuelleHillewaert, Sarah. „Senses of Morality and Morality of the Senses“. In Morality at the Margins, 191–232. Fordham University Press, 2019. http://dx.doi.org/10.5422/fordham/9780823286515.003.0009.
Der volle Inhalt der QuelleHallam, Tony. „The evolutionary significance of mass extinctions“. In Catastrophes and Lesser Calamities. Oxford University Press, 2004. http://dx.doi.org/10.1093/oso/9780198524977.003.0013.
Der volle Inhalt der QuelleMitchell, Peter. „The Triumph of the Mule“. In The Donkey in Human History. Oxford University Press, 2018. http://dx.doi.org/10.1093/oso/9780198749233.003.0012.
Der volle Inhalt der QuelleKonferenzberichte zum Thema "Emergency gate closure"
Schohl, Gerald A. „Transient Analyses for Great Falls Hydro Plant“. In ASME/JSME 2003 4th Joint Fluids Summer Engineering Conference. ASMEDC, 2003. http://dx.doi.org/10.1115/fedsm2003-45258.
Der volle Inhalt der QuelleEverline, Chester, Gregory Gromov, Igor Lola, Stanislav Sholomitsky, Victor Mukoid, Steve Meyer und Alexander Sevbo. „Assessment of Potential Negative Impacts of the Main Gate Valve Closure Under Loss of Coolant Accident at VVER-440 Model 213 Nuclear Power Plant“. In 12th International Conference on Nuclear Engineering. ASMEDC, 2004. http://dx.doi.org/10.1115/icone12-49342.
Der volle Inhalt der QuelleKing, Graeme, Dan Hoang, Victoria Stranzinger und David Thom. „Hot Bitumen Pipeline Valve Replacement: Pipe Prop Anchoring Design With Mechanical Tensioning“. In 2020 13th International Pipeline Conference. American Society of Mechanical Engineers, 2020. http://dx.doi.org/10.1115/ipc2020-9391.
Der volle Inhalt der QuelleMoussafir, J., C. Olry, M. Nibart, A. Albergel, P. Armand, C. Duchenne, F. Mahé, L. Thobois, S. Loaëc und O. Oldrini. „AIRCITY: A Very High Resolution Atmospheric Dispersion Modeling System for Paris“. In ASME 2014 4th Joint US-European Fluids Engineering Division Summer Meeting collocated with the ASME 2014 12th International Conference on Nanochannels, Microchannels, and Minichannels. American Society of Mechanical Engineers, 2014. http://dx.doi.org/10.1115/fedsm2014-21820.
Der volle Inhalt der Quelle