Inhaltsverzeichnis
Auswahl der wissenschaftlichen Literatur zum Thema „Embedding Network“
Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an
Machen Sie sich mit den Listen der aktuellen Artikel, Bücher, Dissertationen, Berichten und anderer wissenschaftlichen Quellen zum Thema "Embedding Network" bekannt.
Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.
Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.
Zeitschriftenartikel zum Thema "Embedding Network"
Bandyopadhyay, Sambaran, N. Lokesh und M. N. Murty. „Outlier Aware Network Embedding for Attributed Networks“. Proceedings of the AAAI Conference on Artificial Intelligence 33 (17.07.2019): 12–19. http://dx.doi.org/10.1609/aaai.v33i01.330112.
Der volle Inhalt der QuelleArmandpour, Mohammadreza, Patrick Ding, Jianhua Huang und Xia Hu. „Robust Negative Sampling for Network Embedding“. Proceedings of the AAAI Conference on Artificial Intelligence 33 (17.07.2019): 3191–98. http://dx.doi.org/10.1609/aaai.v33i01.33013191.
Der volle Inhalt der QuelleHe, Tao, Lianli Gao, Jingkuan Song, Xin Wang, Kejie Huang und Yuanfang Li. „SNEQ: Semi-Supervised Attributed Network Embedding with Attention-Based Quantisation“. Proceedings of the AAAI Conference on Artificial Intelligence 34, Nr. 04 (03.04.2020): 4091–98. http://dx.doi.org/10.1609/aaai.v34i04.5832.
Der volle Inhalt der QuelleLi, Yu, Yuan Tian, Jiawei Zhang und Yi Chang. „Learning Signed Network Embedding via Graph Attention“. Proceedings of the AAAI Conference on Artificial Intelligence 34, Nr. 04 (03.04.2020): 4772–79. http://dx.doi.org/10.1609/aaai.v34i04.5911.
Der volle Inhalt der QuelleWang, Yueyang, Ziheng Duan, Binbing Liao, Fei Wu und Yueting Zhuang. „Heterogeneous Attributed Network Embedding with Graph Convolutional Networks“. Proceedings of the AAAI Conference on Artificial Intelligence 33 (17.07.2019): 10061–62. http://dx.doi.org/10.1609/aaai.v33i01.330110061.
Der volle Inhalt der QuelleZhong, Jianan, Hongjun Qiu und Benyun Shi. „Dynamics-Preserving Graph Embedding for Community Mining and Network Immunization“. Information 11, Nr. 5 (02.05.2020): 250. http://dx.doi.org/10.3390/info11050250.
Der volle Inhalt der QuelleZhuo, Wei, Qianyi Zhan, Yuan Liu, Zhenping Xie und Jing Lu. „Context Attention Heterogeneous Network Embedding“. Computational Intelligence and Neuroscience 2019 (21.08.2019): 1–15. http://dx.doi.org/10.1155/2019/8106073.
Der volle Inhalt der QuelleLu, Ruili, Pengfei Jiao, Yinghui Wang, Huaming Wu und Xue Chen. „Layer Information Similarity Concerned Network Embedding“. Complexity 2021 (26.08.2021): 1–10. http://dx.doi.org/10.1155/2021/2260488.
Der volle Inhalt der QuelleMakarov, Ilya, Mikhail Makarov und Dmitrii Kiselev. „Fusion of text and graph information for machine learning problems on networks“. PeerJ Computer Science 7 (11.05.2021): e526. http://dx.doi.org/10.7717/peerj-cs.526.
Der volle Inhalt der QuelleJi, Fujiao, Zhongying Zhao, Hui Zhou, Heng Chi und Chao Li. „A comparative study on heterogeneous information network embeddings“. Journal of Intelligent & Fuzzy Systems 39, Nr. 3 (07.10.2020): 3463–73. http://dx.doi.org/10.3233/jifs-191796.
Der volle Inhalt der QuelleDissertationen zum Thema "Embedding Network"
Bays, Leonardo Richter. „Virtual network embedding in software-defined networks“. reponame:Biblioteca Digital de Teses e Dissertações da UFRGS, 2017. http://hdl.handle.net/10183/178658.
Der volle Inhalt der QuelleResearch on network virtualization has been active for a number of years, during which a number of virtual network embedding (VNE) approaches have been proposed. These approaches, however, neglect important operational requirements imposed by the underlying virtualization platforms. In the case of SDN/OpenFlow-based virtualization, a crucial example of an operational requirement is the availability of enough memory space for storing flow rules in OpenFlow devices. Due to these circumstances, we advocate that VNE must be performed with some degree of knowledge of the underlying physical networks, otherwise the deployment may suffer from unpredictable or even unsatisfactory performance. Considering SDN/OpenFlow-based physical networks as an important virtualization scenario, we propose a framework based on VNE and OpenFlow coordination for proper deployment of virtual networks (VNs). The proposed approach unfolds in the following main contributions a virtual infrastructure abstraction that allows a service provider to represent the details of his/her VN requirements in a comprehensive manner; a privacy-aware compiler that is able to preprocess this detailed VN request in order to obfuscate sensitive information and derive computable operational requirements; a model for embedding requested VNs that aims at maximizing their feasibility at the physical level. Results obtained through an evaluation of our framework demonstrate that taking such operational requirements into account, as well as accurately assessing them, is of paramount importance to ensure the “health” of VNs hosted on top of the virtualization platform.
Ghazar, Tay. „Efficient Virtual Network Embedding onto A Hierarchical-Based Substrate Network Framework“. Thèse, Université d'Ottawa / University of Ottawa, 2013. http://hdl.handle.net/10393/23932.
Der volle Inhalt der QuelleChochlidakis, Georgios. „Mobility-aware virtual network embedding techniques for next-generation mobile networks“. Thesis, King's College London (University of London), 2018. https://kclpure.kcl.ac.uk/portal/en/theses/mobilityaware-virtual-network-embedding-techniques-for-nextgeneration-mobile-networks(174e714f-2a4a-447a-bcd5-d526170377fd).html.
Der volle Inhalt der QuelleDietrich, David [Verfasser]. „Multi-provider network service embedding / David Dietrich“. Hannover : Technische Informationsbibliothek (TIB), 2016. http://d-nb.info/109909643X/34.
Der volle Inhalt der QuelleWåhlin, Lova. „Towards Machine Learning Enabled Automatic Design of IT-Network Architectures“. Thesis, KTH, Matematisk statistik, 2019. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-249213.
Der volle Inhalt der QuelleDet är många maskininlärningstekniker som inte kan appliceras på data i form av en graf. Tekniker som graph embedding, med andra ord att mappa en graf till ett vektorrum, can öppna upp för en större variation av maskininlärningslösningar. Det här examensarbetet evaluerar hur väl statiska graph embeddings kan fånga viktiga säkerhetsegenskaper hos en IT-arkitektur som är modellerad som en graf, med syftet att användas i en reinforcement learning algoritm. Dom egenskaper i grafen som används för att validera embedding metoderna är hur lång tid det skulle ta för en obehörig attackerare att penetrera IT-arkitekturen. Algorithmerna som implementeras är node embedding metoderna node2vec och gat2vec, samt graph embedding metoden graph2vec. Dom prediktiva resultaten är jämförda med två basmetoder. Resultaten av alla tre metoderna visar tydliga förbättringar relativt basmetoderna, där F1 värden i några fall uppvisar en fördubbling. Det går alltså att dra slutsatsen att att alla tre metoder kan fånga upp säkerhetsegenskaper i en IT-arkitektur. Dock går det inte att säga att statiska graph embeddings är den bästa lösningen till att representera en graf i en reinforcement learning algoritm, det finns andra komplikationer med statiska metoder, till exempel att embeddings från dessa metoder inte kan generaliseras till data som inte var använd till träning. För att kunna dra en absolut slutsats krävs mer undersökning, till exempel av dynamiska graph embedding metoder.
Moura, Leonardo Fernando dos Santos. „Branch & price for the virtual network embedding problem“. reponame:Biblioteca Digital de Teses e Dissertações da UFRGS, 2015. http://hdl.handle.net/10183/115213.
Der volle Inhalt der QuelleVirtualization allows one or more virtual networks to share physical infrastructures. The Virtual Network Embedding problem (VNEP) is one of the main challenges in the virtualization of physical networks. This problem consists in mapping a virtual network into a physical network while respecting capacity constraints. This work shows that finding a feasible solution for this problem is NP-Hard. However, many instances can be solved up to optimality in practice by exploiting the problem structure. We present a Branch & Price algorithm applied to instances of different topologies and sizes. The experimental results suggest that the proposed algorithm is superior to the Integer Linear Programming model solved by CPLEX.
DeFreeuw, Jonathan Daniel. „Embedding Network Information for Machine Learning-based Intrusion Detection“. Thesis, Virginia Tech, 2019. http://hdl.handle.net/10919/99342.
Der volle Inhalt der QuelleMS
Boutigny, François. „Multidomain virtual network embedding under security-oriented requirements applied to 5G network slices“. Electronic Thesis or Diss., Institut polytechnique de Paris, 2019. http://www.theses.fr/2019IPPAS002.
Der volle Inhalt der Quelle5G brings a new concept called network slicing. This technology makes it possible to generalize the business model of MVNOs to companies in need to operate a network, without it being their core business. Each slice is an end-to-end, dedicated and customized virtual network, over a shared infrastructure; this infrastructure itself is provided by the interconnection of infrastructure providers: we refer to this case as a multi-domain infrastructure.The objective of this thesis is to study the allocation of these slices in such a multi-domain infrastructure. The problem is known as Virtual Network Embedding (VNE). It is an NP-hard problem. Practically, the VNE problem looks for which physical resources to associate a set of virtual elements. Physical resources describe what they can offer. Virtual elements describe what they require. Linking these offers and requests is the key to solve the VNE problem.In this thesis, we focused on modeling and implementing security requirements. Indeed, we expect that the initiators of the slices belong to areas distant from telecommunications. In the same way that they know little about this field, we can expect that their needs, especially in security, are novel in the slice context.This thesis presents an algorithm able to handling various requirements, according to an extensible model based on a Satisfiability Modulo Theories (SMT) solver. Compared to Integer Linear Programming (ILP), more common in the VNE field, this formulation allows to express the satisfaction constraints in a more transparent way, and allows to audit all the constraints.Moreover, being aware that infrastructure providers are reluctant to disclose information about their physical resources, we propose a resolution limiting this disclosure. This system has been successfully implemented and tested during the Ph.D
Törnegren, Viktor. „Applying Similarity Condition Embedding Network to an industrial fashion dataset“. Thesis, KTH, Skolan för elektroteknik och datavetenskap (EECS), 2020. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-283351.
Der volle Inhalt der QuelleFör att skapa en mode riktigt klädes outfit behöver man ta hänsyn till flertalet olika faktoer, som t.ex. säsong, färg samt i vilken typ av sammanghang klädesutstyrseln är tänkt att bäras inom etc. Detta är naturligtvis en svår uppgift för en människa att göra men det är ett ännu svårare problem för en dator att lösa. För att lära en algorithm att ta hänsyn till olika likhetsvillkor introducerade Veit, Belongie och Karaletsos [1] och Vasileva m. fl. [2] två olika modeller som använder sig av förbestämda likhetsvillkor. Vidare blev Tan m. fl. [3] inspirerad av [1, 2] och skapade en algorithm som kan lära sig likhetsvillkor via oövervakad inlärning, denna modell testade dom på ett dataset som innehåller klädesutstyrsal som är skapade av vanliga människor. I detta examensarbete presenterar vi ett nytt modedataset som har skapats med hjälp av modeexperter från Henns & Mauritz AB. Vidare bevisar vi att våran implementering av Similarity Condition Embedding Network (SCE-net) från [3] kan välja ut ett klädesplagg som tillsammans med tidigare utvalda plagg skapar en outfit samt utvärdera om klädesplaggen i en outfit är kompatibla eller inte. Vi utför dessa tester på data som innehåller kläder för både män och kvinnor. Vi visar också att SCE-net tränas med data som innehåller kläder för ett kön för att senare prediktera kläder i outfits för ett annat kön. Vidare tillhandahåller vi resultat som påvisar att SCE-net generaliserar väl till osedda kategorier genom att träna modellen på outfits som inte innehåller accessoarer och sedan testar vi modellen på klädes utstyrslar som innehåller accessoarer. Utöver detta introducerar vi även ett dataset som innehåller artiklar från kunders kundvagnar från Hennes & Mauritz onlinebutiker samt deras fysiska butiker. Med hjälp av denna data visar vi att våran implementering av SCE-net kan prediktera nästa vara i en kunds varukorg.
Okuno, Akifumi. „Studies on Neural Network-Based Graph Embedding and Its Extensions“. Kyoto University, 2020. http://hdl.handle.net/2433/259075.
Der volle Inhalt der QuelleBücher zum Thema "Embedding Network"
Wijers, Jean Paul, Hrsg. Managing Authentic Relationships. NL Amsterdam: Amsterdam University Press, 2019. http://dx.doi.org/10.5117/9789462988613.
Der volle Inhalt der QuelleCampbell, Roy Harold. The embedded operating system project: Mid-year report, May 1985. Urbana, Ill: Software Systems Research Group, University of Illinois at Urbana-Champaign, Dept. of Computer Science, 1985.
Den vollen Inhalt der Quelle findenUnger, Herwig, und Wolfgang A. Halang, Hrsg. Autonomous Systems 2016. VDI Verlag, 2016. http://dx.doi.org/10.51202/9783186848109.
Der volle Inhalt der QuelleKwon, Younggeun. Embeddings in parallel systems. 1993.
Den vollen Inhalt der Quelle findenRowley, Robert A. Fault-tolerant ring embedding in De Bruijn networks. 1993.
Den vollen Inhalt der Quelle findenRowley, Robert A. Fault-tolerant ring embedding in De Bruijn networks. 1993.
Den vollen Inhalt der Quelle findenKubek, Maria M., und Zhong Li, Hrsg. Autonomous Systems 2018. VDI Verlag, 2018. http://dx.doi.org/10.51202/9783186862105.
Der volle Inhalt der QuelleSchäfer, Anne, und Rüdiger Schmitt-Beck. A Vicious Circle of Demobilization? Context Effects on Turnout at the 2009 and 2013 German Federal Elections. Oxford University Press, 2017. http://dx.doi.org/10.1093/oso/9780198792130.003.0006.
Der volle Inhalt der QuelleUnited States. National Aeronautics and Space Administration., Hrsg. The embedded operating system project: Mid-year report, May 1985. Urbana, Ill: Software Systems Research Group, University of Illinois at Urbana-Champaign, Dept. of Computer Science, 1985.
Den vollen Inhalt der Quelle findenBuchteile zum Thema "Embedding Network"
Zhang, Jiawei, und Philip S. Yu. „Network Embedding“. In Broad Learning Through Fusions, 385–413. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-12528-8_11.
Der volle Inhalt der QuelleChen, Weizheng, Xianling Mao, Xiangyu Li, Yan Zhang und Xiaoming Li. „PNE: Label Embedding Enhanced Network Embedding“. In Advances in Knowledge Discovery and Data Mining, 547–60. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-57454-7_43.
Der volle Inhalt der QuelleMakarov, Ilya, Olga Gerasimova, Pavel Sulimov und Leonid E. Zhukov. „Co-authorship Network Embedding and Recommending Collaborators via Network Embedding“. In Lecture Notes in Computer Science, 32–38. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-030-11027-7_4.
Der volle Inhalt der QuelleRahman, Muntasir Raihan, Issam Aib und Raouf Boutaba. „Survivable Virtual Network Embedding“. In NETWORKING 2010, 40–52. Berlin, Heidelberg: Springer Berlin Heidelberg, 2010. http://dx.doi.org/10.1007/978-3-642-12963-6_4.
Der volle Inhalt der QuelleHuang, Xiao, Jundong Li und Xia Hu. „Accelerated Attributed Network Embedding“. In Proceedings of the 2017 SIAM International Conference on Data Mining, 633–41. Philadelphia, PA: Society for Industrial and Applied Mathematics, 2017. http://dx.doi.org/10.1137/1.9781611974973.71.
Der volle Inhalt der QuelleLi, Jundong, Chen Chen, Hanghang Tong und Huan Liu. „Multi-Layered Network Embedding“. In Proceedings of the 2018 SIAM International Conference on Data Mining, 684–92. Philadelphia, PA: Society for Industrial and Applied Mathematics, 2018. http://dx.doi.org/10.1137/1.9781611975321.77.
Der volle Inhalt der QuelleYuan, Shuhan, Xintao Wu und Yang Xiang. „SNE: Signed Network Embedding“. In Advances in Knowledge Discovery and Data Mining, 183–95. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-57529-2_15.
Der volle Inhalt der QuelleLi, Chaozhuo, Zhoujun Li, Senzhang Wang, Yang Yang, Xiaoming Zhang und Jianshe Zhou. „Semi-Supervised Network Embedding“. In Database Systems for Advanced Applications, 131–47. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-55753-3_9.
Der volle Inhalt der QuelleKong, Chao, Baoxiang Chen, Shaoying Li, Qi Zhou, Dongfang Wang und Liping Zhang. „D2NE: Deep Dynamic Network Embedding“. In Advanced Data Mining and Applications, 168–75. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-65390-3_14.
Der volle Inhalt der QuelleZhang, Xia, Weizheng Chen und Hongfei Yan. „TLINE: Scalable Transductive Network Embedding“. In Information Retrieval Technology, 98–110. Cham: Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-48051-0_8.
Der volle Inhalt der QuelleKonferenzberichte zum Thema "Embedding Network"
Zhang, Yizhou, Guojie Song, Lun Du, Shuwen Yang und Yilun Jin. „DANE: Domain Adaptive Network Embedding“. In Twenty-Eighth International Joint Conference on Artificial Intelligence {IJCAI-19}. California: International Joint Conferences on Artificial Intelligence Organization, 2019. http://dx.doi.org/10.24963/ijcai.2019/606.
Der volle Inhalt der QuelleShen, Xiaobo, Shirui Pan, Weiwei Liu, Yew-Soon Ong und Quan-Sen Sun. „Discrete Network Embedding“. In Twenty-Seventh International Joint Conference on Artificial Intelligence {IJCAI-18}. California: International Joint Conferences on Artificial Intelligence Organization, 2018. http://dx.doi.org/10.24963/ijcai.2018/493.
Der volle Inhalt der QuelleSun, Yiwei, Suhang Wang, Tsung-Yu Hsieh, Xianfeng Tang und Vasant Honavar. „MEGAN: A Generative Adversarial Network for Multi-View Network Embedding“. In Twenty-Eighth International Joint Conference on Artificial Intelligence {IJCAI-19}. California: International Joint Conferences on Artificial Intelligence Organization, 2019. http://dx.doi.org/10.24963/ijcai.2019/489.
Der volle Inhalt der QuelleGuo, Junliang, Linli Xu und Jingchang Liu. „SPINE: Structural Identity Preserved Inductive Network Embedding“. In Twenty-Eighth International Joint Conference on Artificial Intelligence {IJCAI-19}. California: International Joint Conferences on Artificial Intelligence Organization, 2019. http://dx.doi.org/10.24963/ijcai.2019/333.
Der volle Inhalt der QuelleHuang, Hong, Ruize Shi, Wei Zhou, Xiao Wang, Hai Jin und Xiaoming Fu. „Temporal Heterogeneous Information Network Embedding“. In Thirtieth International Joint Conference on Artificial Intelligence {IJCAI-21}. California: International Joint Conferences on Artificial Intelligence Organization, 2021. http://dx.doi.org/10.24963/ijcai.2021/203.
Der volle Inhalt der QuelleZhang, Jie, Yuxiao Dong, Yan Wang, Jie Tang und Ming Ding. „ProNE: Fast and Scalable Network Representation Learning“. In Twenty-Eighth International Joint Conference on Artificial Intelligence {IJCAI-19}. California: International Joint Conferences on Artificial Intelligence Organization, 2019. http://dx.doi.org/10.24963/ijcai.2019/594.
Der volle Inhalt der QuelleYang, Liang, Yuexue Wang, Junhua Gu, Chuan Wang, Xiaochun Cao und Yuanfang Guo. „JANE: Jointly Adversarial Network Embedding“. In Twenty-Ninth International Joint Conference on Artificial Intelligence and Seventeenth Pacific Rim International Conference on Artificial Intelligence {IJCAI-PRICAI-20}. California: International Joint Conferences on Artificial Intelligence Organization, 2020. http://dx.doi.org/10.24963/ijcai.2020/192.
Der volle Inhalt der QuelleHuang, Hong, Zixuan Fang, Xiao Wang, Youshan Miao und Hai Jin. „Motif-Preserving Temporal Network Embedding“. In Twenty-Ninth International Joint Conference on Artificial Intelligence and Seventeenth Pacific Rim International Conference on Artificial Intelligence {IJCAI-PRICAI-20}. California: International Joint Conferences on Artificial Intelligence Organization, 2020. http://dx.doi.org/10.24963/ijcai.2020/172.
Der volle Inhalt der QuelleDong, Yuxiao, Ziniu Hu, Kuansan Wang, Yizhou Sun und Jie Tang. „Heterogeneous Network Representation Learning“. In Twenty-Ninth International Joint Conference on Artificial Intelligence and Seventeenth Pacific Rim International Conference on Artificial Intelligence {IJCAI-PRICAI-20}. California: International Joint Conferences on Artificial Intelligence Organization, 2020. http://dx.doi.org/10.24963/ijcai.2020/677.
Der volle Inhalt der QuelleZhang, Hongming, Liwei Qiu, Lingling Yi und Yangqiu Song. „Scalable Multiplex Network Embedding“. In Twenty-Seventh International Joint Conference on Artificial Intelligence {IJCAI-18}. California: International Joint Conferences on Artificial Intelligence Organization, 2018. http://dx.doi.org/10.24963/ijcai.2018/428.
Der volle Inhalt der QuelleBerichte der Organisationen zum Thema "Embedding Network"
Bano, Masooda, und Zeena Oberoi. Embedding Innovation in State Systems: Lessons from Pratham in India. Research on Improving Systems of Education (RISE), Dezember 2020. http://dx.doi.org/10.35489/bsg-rise-wp_2020/058.
Der volle Inhalt der QuelleChakraborty, I., B. Kelley, B. Gallagher und D. Merl. Performance Evaluation of Network Flow and Device Classification using Network Features and Device Embeddings. Office of Scientific and Technical Information (OSTI), September 2020. http://dx.doi.org/10.2172/1668490.
Der volle Inhalt der QuelleKelly, Luke. Lessons Learned on Cultural Heritage Protection in Conflict and Protracted Crisis. Institute of Development Studies (IDS), April 2021. http://dx.doi.org/10.19088/k4d.2021.068.
Der volle Inhalt der Quelle