Inhaltsverzeichnis
Auswahl der wissenschaftlichen Literatur zum Thema „Embedding de graph“
Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an
Machen Sie sich mit den Listen der aktuellen Artikel, Bücher, Dissertationen, Berichten und anderer wissenschaftlichen Quellen zum Thema "Embedding de graph" bekannt.
Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.
Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.
Zeitschriftenartikel zum Thema "Embedding de graph"
Liang, Jiongqian, Saket Gurukar und Srinivasan Parthasarathy. „MILE: A Multi-Level Framework for Scalable Graph Embedding“. Proceedings of the International AAAI Conference on Web and Social Media 15 (22.05.2021): 361–72. http://dx.doi.org/10.1609/icwsm.v15i1.18067.
Der volle Inhalt der QuelleDuong, Chi Thang, Trung Dung Hoang, Hongzhi Yin, Matthias Weidlich, Quoc Viet Hung Nguyen und Karl Aberer. „Scalable robust graph embedding with Spark“. Proceedings of the VLDB Endowment 15, Nr. 4 (Dezember 2021): 914–22. http://dx.doi.org/10.14778/3503585.3503599.
Der volle Inhalt der QuelleZhou, Houquan, Shenghua Liu, Danai Koutra, Huawei Shen und Xueqi Cheng. „A Provable Framework of Learning Graph Embeddings via Summarization“. Proceedings of the AAAI Conference on Artificial Intelligence 37, Nr. 4 (26.06.2023): 4946–53. http://dx.doi.org/10.1609/aaai.v37i4.25621.
Der volle Inhalt der QuelleFang, Peng, Arijit Khan, Siqiang Luo, Fang Wang, Dan Feng, Zhenli Li, Wei Yin und Yuchao Cao. „Distributed Graph Embedding with Information-Oriented Random Walks“. Proceedings of the VLDB Endowment 16, Nr. 7 (März 2023): 1643–56. http://dx.doi.org/10.14778/3587136.3587140.
Der volle Inhalt der QuelleMao, Yuqing, und Kin Wah Fung. „Use of word and graph embedding to measure semantic relatedness between Unified Medical Language System concepts“. Journal of the American Medical Informatics Association 27, Nr. 10 (01.10.2020): 1538–46. http://dx.doi.org/10.1093/jamia/ocaa136.
Der volle Inhalt der QuelleMakarov, Ilya, Dmitrii Kiselev, Nikita Nikitinsky und Lovro Subelj. „Survey on graph embeddings and their applications to machine learning problems on graphs“. PeerJ Computer Science 7 (04.02.2021): e357. http://dx.doi.org/10.7717/peerj-cs.357.
Der volle Inhalt der QuelleFRIESEN, TYLER, und VASSILY OLEGOVICH MANTUROV. „EMBEDDINGS OF *-GRAPHS INTO 2-SURFACES“. Journal of Knot Theory and Its Ramifications 22, Nr. 12 (Oktober 2013): 1341005. http://dx.doi.org/10.1142/s0218216513410058.
Der volle Inhalt der QuelleMohar, Bojan. „Combinatorial Local Planarity and the Width of Graph Embeddings“. Canadian Journal of Mathematics 44, Nr. 6 (01.12.1992): 1272–88. http://dx.doi.org/10.4153/cjm-1992-076-8.
Der volle Inhalt der QuelleChen, Mingyang, Wen Zhang, Zhen Yao, Yushan Zhu, Yang Gao, Jeff Z. Pan und Huajun Chen. „Entity-Agnostic Representation Learning for Parameter-Efficient Knowledge Graph Embedding“. Proceedings of the AAAI Conference on Artificial Intelligence 37, Nr. 4 (26.06.2023): 4182–90. http://dx.doi.org/10.1609/aaai.v37i4.25535.
Der volle Inhalt der QuelleXie, Anze, Anders Carlsson, Jason Mohoney, Roger Waleffe, Shanan Peters, Theodoros Rekatsinas und Shivaram Venkataraman. „Demo of marius“. Proceedings of the VLDB Endowment 14, Nr. 12 (Juli 2021): 2759–62. http://dx.doi.org/10.14778/3476311.3476338.
Der volle Inhalt der QuelleDissertationen zum Thema "Embedding de graph"
Zhang, Zheng. „Explorations in Word Embeddings : graph-based word embedding learning and cross-lingual contextual word embedding learning“. Thesis, Université Paris-Saclay (ComUE), 2019. http://www.theses.fr/2019SACLS369/document.
Der volle Inhalt der QuelleWord embeddings are a standard component of modern natural language processing architectures. Every time there is a breakthrough in word embedding learning, the vast majority of natural language processing tasks, such as POS-tagging, named entity recognition (NER), question answering, natural language inference, can benefit from it. This work addresses the question of how to improve the quality of monolingual word embeddings learned by prediction-based models and how to map contextual word embeddings generated by pretrained language representation models like ELMo or BERT across different languages.For monolingual word embedding learning, I take into account global, corpus-level information and generate a different noise distribution for negative sampling in word2vec. In this purpose I pre-compute word co-occurrence statistics with corpus2graph, an open-source NLP-application-oriented Python package that I developed: it efficiently generates a word co-occurrence network from a large corpus, and applies to it network algorithms such as random walks. For cross-lingual contextual word embedding mapping, I link contextual word embeddings to word sense embeddings. The improved anchor generation algorithm that I propose also expands the scope of word embedding mapping algorithms from context independent to contextual word embeddings
Ahmed, Algabli Shaima. „Learning the Graph Edit Distance through embedding the graph matching“. Doctoral thesis, Universitat Rovira i Virgili, 2020. http://hdl.handle.net/10803/669612.
Der volle Inhalt der QuelleLos gráficos son estructuras de datos abstractas que se utilizan para modelar problemas reales con dos entidades básicas: nodos y aristas. Cada nodo o vértice representa un punto de interés relevante de un problema, y cada borde representa la relación entre estos puntos. Se podrían atribuir nodos y bordes para aumentar la precisión del modelo, lo que significa que estos atributos podrían variar de vectores de características a etiquetas de descripción. Debido a esta versatilidad, se han encontrado muchas aplicaciones en campos como visión por computadora, biomédicos y análisis de redes, etc. La primera parte de esta tesis presenta un método general para aprender automáticamente los costos de edición involucrados en la Edición de Gráficos Distancia. El método se basa en incrustar pares de gráficos y su mapeo de nodo a nodo de verdad fundamental en un espacio euclidiano. De esta manera, el algoritmo de aprendizaje no necesita calcular ninguna coincidencia de gráfico tolerante a errores, que es el principal inconveniente de otros métodos debido a su complejidad computacional exponencial intrínseca. Sin embargo, el método de aprendizaje tiene la principal restricción de que los costos de edición deben ser constantes. Luego probamos este método con varias bases de datos de gráficos y también lo aplicamos para realizar el registro de imágenes. En la segunda parte de la tesis, este método se especializa en la verificación de huellas digitales. Las dos diferencias principales con respecto al otro método son que solo definimos los costos de edición de sustitución en los nodos. Por lo tanto, suponemos que los gráficos no tienen aristas. Y también, el método de aprendizaje no se basa en una clasificación lineal sino en una regresión lineal.
Graphs are abstract data structures used to model real problems with two basic entities: nodes and edges. Each node or vertex represents a relevant point of interest of a problem, and each edge represents the relationship between these points. Nodes and edges could be attributed to increase the accuracy of the model, which means that these attributes could vary from feature vectors to description labels. Due to this versatility, many applications have been found in fields such as computer vision, biomedics, and network analysis, and so on .The first part of this thesis presents a general method to automatically learn the edit costs involved in the Graph Edit Distance. The method is based on embedding pairs of graphs and their ground-truth node-tonode mapping into a Euclidean space. In this way, the learning algorithm does not need to compute any Error-Tolerant Graph Matching, which is the main drawback of other methods due to its intrinsic exponential computational complexity. Nevertheless, the learning method has the main restriction that edit costs have to be constant. Then we test this method with several graph databases and also we apply it to perform image registration. In the second part of the thesis, this method is particularized to fingerprint verification. The two main differences with respect to the other method are that we only define the substitution edit costs on the nodes. Thus, we assume graphs do not have edges. And also, the learning method is not based on a linear classification but on a linear regression.
Carroll, Douglas Edmonds. „Embedding parameterized graph classes into normed spaces“. Diss., Restricted to subscribing institutions, 2007. http://proquest.umi.com/pqdweb?did=1324389171&sid=1&Fmt=2&clientId=1564&RQT=309&VName=PQD.
Der volle Inhalt der QuelleRocha, Mário. „The embedding of complete bipartite graphs onto grids with a minimum grid cutwidth“. CSUSB ScholarWorks, 2003. https://scholarworks.lib.csusb.edu/etd-project/2311.
Der volle Inhalt der QuelleDube, Matthew P. „An Embedding Graph for 9-Intersection Topological Spatial Relations“. Fogler Library, University of Maine, 2009. http://www.library.umaine.edu/theses/pdf/DubeMP2009.pdf.
Der volle Inhalt der QuelleMONDAL, DEBAJYOTI. „Embedding a Planar Graph on a Given Point Set“. Springer-Verlag Berlin, 2012. http://hdl.handle.net/1993/8869.
Der volle Inhalt der QuelleMitropolitsky, Milko. „On the Impact of Graph Embedding on Device Placement“. Thesis, KTH, Skolan för elektroteknik och datavetenskap (EECS), 2020. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-280435.
Der volle Inhalt der QuelleModerna neurala nätverk (NN) -modeller kräver mer data och parametrar för att utföra allt mer komplexa uppgifter. När en NN-modell blir för stor för att rymmas på en dator, kan den behöva distribueras över flera datorer. Vilka vil- kor som ska användas vid distributionen av en NN-modell, och mer konkret hur olika delar av modellen ska spridas över olika datorer kallas enhetsplats- problemet. Avhandlingen kommer att fokusera på detta problem. Tidigare till- vägagångssätt har krävt att placeringspolicyn skapas manuellt av människor med expertis i detta område. Eftersom den metoden inte går att skala upp fo- kuserar man på att hantera enhetsplaceringsproblemet genom att automatisera processen med reinforcement learning (RL). De flesta av RL-systemen inne- håller olika typer av grafinbäddningsmoduler.I arbetet försöker vi öka kunskapen om hur man hanterar problem med enhetsplacering genom att mäta och bedöma effekterna av grafinbäddningar på kvaliteten på villkoren för enhetsplacering. Vi jämför de olika metoderna på två sätt: runtime improvement and computation time. Den förstnämnda är ett värde för hur mycket snabbare den nya placeringspolicyn är i jämförelse med en baslinje. Det andra beskriver hur mycket tid som krävs av systemet för att uppnå den förbättrade runtime.Den här avhandlingen bygger på tidigare forskning inom området av enhetsplacering för att undersöka hur olika topp- moderna metoder till enhetsplaceringsprinciper. Grafinbäddningsarkitekturer som vi jämför i avhandlignen är Placeto (används som en baslinje), Graph- SAGE och P-GNN.Vi uppnår en förbättring av runtime med en ökning på 23.967% när vi använder P-GNN jämfört med Placeto och 31.164% ökning från baslinjen. GraphSAGE ger 1.165% bättre resultat än Placeto med samma installation. När det gäller beräkningstiden har GraphSAGE en förbättring på 11.560% jämfört med Placeto, medan P-GNN är 6.950% långsammare än baslinjen.Med resultaten kan vi bekräfta att grafinbäddningsarkitektur kan ha en be- tydande inverkan på enhetsplaceringsprinciper och deras prestanda. Desto mer invecklad grafinbäddningsarkitekturer fångar mer data om grafen och dess to- pologi ger runtime improvment. Däremot blir kan komplexiteten kosta i com- putation time på grund av det tid som krävs för att utbilda placeringssystemet.
Behzadi, Lila. „An improved spring-based graph embedding algorithm and LayoutShow, a Java environment for graph drawing“. Thesis, National Library of Canada = Bibliothèque nationale du Canada, 1999. http://www.collectionscanada.ca/obj/s4/f2/dsk3/ftp04/mq43368.pdf.
Der volle Inhalt der QuelleTahraoui, Mohammed Amin. „Coloring, packing and embedding of graphs“. Phd thesis, Université Claude Bernard - Lyon I, 2012. http://tel.archives-ouvertes.fr/tel-00995041.
Der volle Inhalt der QuelleOkuno, Akifumi. „Studies on Neural Network-Based Graph Embedding and Its Extensions“. Kyoto University, 2020. http://hdl.handle.net/2433/259075.
Der volle Inhalt der QuelleBücher zum Thema "Embedding de graph"
Fu, Yun, und Yunqian Ma, Hrsg. Graph Embedding for Pattern Analysis. New York, NY: Springer New York, 2013. http://dx.doi.org/10.1007/978-1-4614-4457-2.
Der volle Inhalt der QuelleShaw, Blake. Graph Embedding and Nonlinear Dimensionality Reduction. [New York, N.Y.?]: [publisher not identified], 2011.
Den vollen Inhalt der Quelle findenGuattery, Stephen. Graph embedding techniques for bounding condition numbers of incomplete factor preconditioners. Hampton, Va: Institute for Computer Applications in Science and Engineering, NASA Langley Research Center, 1997.
Den vollen Inhalt der Quelle findenCenter, Langley Research, Hrsg. Graph embedding techniques for bounding condition numbers of incomplete factor preconditioners. Hampton, Va: National Aeronautics and Space Administration, Langley Research Center, 1997.
Den vollen Inhalt der Quelle findenRiesen, Kaspar. Graph classification and clustering based on vector space embedding. New Jersey: World Scientific, 2010.
Den vollen Inhalt der Quelle findenYanpei, Liu. Embeddability in graphs. Beijing, China: Science Press, 1995.
Den vollen Inhalt der Quelle findenL, Miller Gary, und Langley Research Center, Hrsg. Graph embeddings and Laplacian eigenvalues. Hampton, Va: National Aeronautics and Space Administration, Langley Research Center, 1998.
Den vollen Inhalt der Quelle findenL, Miller Gary, und Langley Research Center, Hrsg. Graph embeddings and Laplacian eigenvalues. Hampton, Va: National Aeronautics and Space Administration, Langley Research Center, 1998.
Den vollen Inhalt der Quelle findenPaulheim, Heiko, Petar Ristoski und Jan Portisch. Embedding Knowledge Graphs with RDF2vec. Cham: Springer International Publishing, 2023. http://dx.doi.org/10.1007/978-3-031-30387-6.
Der volle Inhalt der QuelleInstitute for Computer Applications in Science and Engineering., Hrsg. Graph embeddings, symmetric real matrices, and generalized inverses. Hampton, VA: Institute for Computer Applications in Science and Engineering, NASA Langley Research Center, 1998.
Den vollen Inhalt der Quelle findenBuchteile zum Thema "Embedding de graph"
Goyal, Palash. „Graph Embedding“. In Machine Learning for Data Science Handbook, 339–51. Cham: Springer International Publishing, 2023. http://dx.doi.org/10.1007/978-3-031-24628-9_15.
Der volle Inhalt der QuelleRokka Chhetri, Sujit, und Mohammad Abdullah Al Faruque. „Dynamic Graph Embedding“. In Data-Driven Modeling of Cyber-Physical Systems using Side-Channel Analysis, 209–29. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-37962-9_10.
Der volle Inhalt der QuelleKrause, Franz, Kabul Kurniawan, Elmar Kiesling, Jorge Martinez-Gil, Thomas Hoch, Mario Pichler, Bernhard Heinzl und Bernhard Moser. „Leveraging Semantic Representations via Knowledge Graph Embeddings“. In Artificial Intelligence in Manufacturing, 71–85. Cham: Springer Nature Switzerland, 2023. http://dx.doi.org/10.1007/978-3-031-46452-2_5.
Der volle Inhalt der QuelleEstrella-Balderrama, Alejandro, J. Joseph Fowler und Stephen G. Kobourov. „Graph Simultaneous Embedding Tool, GraphSET“. In Graph Drawing, 169–80. Berlin, Heidelberg: Springer Berlin Heidelberg, 2009. http://dx.doi.org/10.1007/978-3-642-00219-9_17.
Der volle Inhalt der QuelleAuer, Christopher, Christian Bachmaier, Franz Josef Brandenburg und Andreas Gleißner. „Classification of Planar Upward Embedding“. In Graph Drawing, 415–26. Berlin, Heidelberg: Springer Berlin Heidelberg, 2012. http://dx.doi.org/10.1007/978-3-642-25878-7_39.
Der volle Inhalt der QuelleJouili, Salim, und Salvatore Tabbone. „Graph Embedding Using Constant Shift Embedding“. In Recognizing Patterns in Signals, Speech, Images and Videos, 83–92. Berlin, Heidelberg: Springer Berlin Heidelberg, 2010. http://dx.doi.org/10.1007/978-3-642-17711-8_9.
Der volle Inhalt der QuelleHarel, David, und Yehuda Koren. „Graph Drawing by High-Dimensional Embedding“. In Graph Drawing, 207–19. Berlin, Heidelberg: Springer Berlin Heidelberg, 2002. http://dx.doi.org/10.1007/3-540-36151-0_20.
Der volle Inhalt der QuelleKatz, Bastian, Marcus Krug, Ignaz Rutter und Alexander Wolff. „Manhattan-Geodesic Embedding of Planar Graphs“. In Graph Drawing, 207–18. Berlin, Heidelberg: Springer Berlin Heidelberg, 2010. http://dx.doi.org/10.1007/978-3-642-11805-0_21.
Der volle Inhalt der QuelleDi Giacomo, Emilio, Fabrizio Frati, Radoslav Fulek, Luca Grilli und Marcus Krug. „Orthogeodesic Point-Set Embedding of Trees“. In Graph Drawing, 52–63. Berlin, Heidelberg: Springer Berlin Heidelberg, 2012. http://dx.doi.org/10.1007/978-3-642-25878-7_6.
Der volle Inhalt der QuelleDornheim, Christoph. „Graph Embedding with Topological Cycle-Constraints“. In Graph Drawing, 155–64. Berlin, Heidelberg: Springer Berlin Heidelberg, 1999. http://dx.doi.org/10.1007/3-540-46648-7_16.
Der volle Inhalt der QuelleKonferenzberichte zum Thema "Embedding de graph"
Giri, Pulak Ranjan, Mori Kurokawa und Kazuhiro Saito. „Fast Variational Knowledge Graph Embedding“. In 2024 IEEE International Conference on Quantum Computing and Engineering (QCE), 386–87. IEEE, 2024. https://doi.org/10.1109/qce60285.2024.10318.
Der volle Inhalt der QuelleBai, Yunsheng, Hao Ding, Yang Qiao, Agustin Marinovic, Ken Gu, Ting Chen, Yizhou Sun und Wei Wang. „Unsupervised Inductive Graph-Level Representation Learning via Graph-Graph Proximity“. In Twenty-Eighth International Joint Conference on Artificial Intelligence {IJCAI-19}. California: International Joint Conferences on Artificial Intelligence Organization, 2019. http://dx.doi.org/10.24963/ijcai.2019/275.
Der volle Inhalt der QuelleLuo, Gongxu, Jianxin Li, Hao Peng, Carl Yang, Lichao Sun, Philip S. Yu und Lifang He. „Graph Entropy Guided Node Embedding Dimension Selection for Graph Neural Networks“. In Thirtieth International Joint Conference on Artificial Intelligence {IJCAI-21}. California: International Joint Conferences on Artificial Intelligence Organization, 2021. http://dx.doi.org/10.24963/ijcai.2021/381.
Der volle Inhalt der QuellePan, Shirui, Ruiqi Hu, Guodong Long, Jing Jiang, Lina Yao und Chengqi Zhang. „Adversarially Regularized Graph Autoencoder for Graph Embedding“. In Twenty-Seventh International Joint Conference on Artificial Intelligence {IJCAI-18}. California: International Joint Conferences on Artificial Intelligence Organization, 2018. http://dx.doi.org/10.24963/ijcai.2018/362.
Der volle Inhalt der QuelleRahman, Tahleen, Bartlomiej Surma, Michael Backes und Yang Zhang. „Fairwalk: Towards Fair Graph Embedding“. In Twenty-Eighth International Joint Conference on Artificial Intelligence {IJCAI-19}. California: International Joint Conferences on Artificial Intelligence Organization, 2019. http://dx.doi.org/10.24963/ijcai.2019/456.
Der volle Inhalt der QuelleSun, Zequn, Wei Hu, Qingheng Zhang und Yuzhong Qu. „Bootstrapping Entity Alignment with Knowledge Graph Embedding“. In Twenty-Seventh International Joint Conference on Artificial Intelligence {IJCAI-18}. California: International Joint Conferences on Artificial Intelligence Organization, 2018. http://dx.doi.org/10.24963/ijcai.2018/611.
Der volle Inhalt der QuelleWan, Hai, Yonghao Luo, Bo Peng und Wei-Shi Zheng. „Representation Learning for Scene Graph Completion via Jointly Structural and Visual Embedding“. In Twenty-Seventh International Joint Conference on Artificial Intelligence {IJCAI-18}. California: International Joint Conferences on Artificial Intelligence Organization, 2018. http://dx.doi.org/10.24963/ijcai.2018/132.
Der volle Inhalt der QuelleSinger, Uriel, Ido Guy und Kira Radinsky. „Node Embedding over Temporal Graphs“. In Twenty-Eighth International Joint Conference on Artificial Intelligence {IJCAI-19}. California: International Joint Conferences on Artificial Intelligence Organization, 2019. http://dx.doi.org/10.24963/ijcai.2019/640.
Der volle Inhalt der QuelleZhang, Hengtong, Tianhang Zheng, Jing Gao, Chenglin Miao, Lu Su, Yaliang Li und Kui Ren. „Data Poisoning Attack against Knowledge Graph Embedding“. In Twenty-Eighth International Joint Conference on Artificial Intelligence {IJCAI-19}. California: International Joint Conferences on Artificial Intelligence Organization, 2019. http://dx.doi.org/10.24963/ijcai.2019/674.
Der volle Inhalt der QuelleZhang, Yizhou, Guojie Song, Lun Du, Shuwen Yang und Yilun Jin. „DANE: Domain Adaptive Network Embedding“. In Twenty-Eighth International Joint Conference on Artificial Intelligence {IJCAI-19}. California: International Joint Conferences on Artificial Intelligence Organization, 2019. http://dx.doi.org/10.24963/ijcai.2019/606.
Der volle Inhalt der Quelle