Zeitschriftenartikel zum Thema „Elongational rheology“

Um die anderen Arten von Veröffentlichungen zu diesem Thema anzuzeigen, folgen Sie diesem Link: Elongational rheology.

Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an

Wählen Sie eine Art der Quelle aus:

Machen Sie sich mit Top-50 Zeitschriftenartikel für die Forschung zum Thema "Elongational rheology" bekannt.

Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.

Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.

Sehen Sie die Zeitschriftenartikel für verschiedene Spezialgebieten durch und erstellen Sie Ihre Bibliographie auf korrekte Weise.

1

Koyama, Kiyohito. „Melt Rheology (Elongational Viscosity).“ Kobunshi 41, Nr. 2 (1992): 102–5. http://dx.doi.org/10.1295/kobunshi.41.102.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
2

Wei, X., J. R. Collier und S. Petrovan. „Shear and elongational rheology of polyethylenes with different molecular characteristics. II. Elongational rheology“. Journal of Applied Polymer Science 104, Nr. 2 (2007): 1184–94. http://dx.doi.org/10.1002/app.25757.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
3

Seyfzadeh, B., und J. R. Collier. „Elongational rheology of polyethylene melts“. Journal of Applied Polymer Science 79, Nr. 12 (2001): 2170–84. http://dx.doi.org/10.1002/1097-4628(20010321)79:12<2170::aid-app1025>3.0.co;2-e.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
4

Watanabe, Hiroshi, und Yumi Matsumiya. „Revisit the Elongational Viscosity of FENE Dumbbell Model“. Nihon Reoroji Gakkaishi 45, Nr. 4 (2017): 185–90. http://dx.doi.org/10.1678/rheology.45.185.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
5

Xu, Hai Hang, Lei Zhong und Ji Zhao Liang. „Elongational Rheology of LLDPE by Melt Spinning Technique“. Advanced Materials Research 146-147 (Oktober 2010): 323–26. http://dx.doi.org/10.4028/www.scientific.net/amr.146-147.323.

Der volle Inhalt der Quelle
Annotation:
Elongational rheology of LLDPE was studied by melt spinning technique. It was observed that the melt strength of LLDPE decreased with the rise of temperature, and the melts with lower elongational viscosities often broke at higher draw ratio. The melt strength activation energy was calculated by the slope of Arrhennius plots. The curves of elongational stress and viscosity under different conditions were drawn and compared, the results showed that with the increase of strain rate, the elongational stress rose and the viscosity decreased, both stress and viscosity dropped with the rise of temperature, and higher extrusion velocity caused lower elongational stress and viscosity.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
6

Grumbein, S., M. Werb, M. Opitz und O. Lieleg. „Elongational rheology of bacterial biofilmsin situ“. Journal of Rheology 60, Nr. 6 (November 2016): 1085–94. http://dx.doi.org/10.1122/1.4958667.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
7

Collier, J., S. Petrovan, P. Patil und B. Collier. „Elongational rheology of fiber forming polymers“. Journal of Materials Science 40, Nr. 19 (Oktober 2005): 5133–37. http://dx.doi.org/10.1007/s10853-005-4402-5.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
8

Stadler, Florian J., Tatjana Friedrich, Katharina Kraus, Bernd Tieke und Christian Bailly. „Elongational rheology of NIPAM-based hydrogels“. Rheologica Acta 52, Nr. 5 (12.03.2013): 413–23. http://dx.doi.org/10.1007/s00397-013-0690-x.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
9

Kolitawong, Chanyut. „Rheology properties of elongational flow experiments“. Journal of Applied Science 18, Nr. 2 (03.12.2019): 116–40. http://dx.doi.org/10.14416/j.appsci.2019.09.002.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
10

Ferguson, J., und N. E. Hudson. „Transient elongational rheology of polymeric fluids“. European Polymer Journal 29, Nr. 2-3 (Februar 1993): 141–47. http://dx.doi.org/10.1016/0014-3057(93)90074-p.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
11

Ajji, A., P. Sammut und M. A. Huneault. „Elongational rheology of LLDPE / LDPE blends“. Journal of Applied Polymer Science 88, Nr. 14 (17.04.2003): 3070–77. http://dx.doi.org/10.1002/app.11931.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
12

Venerus, David C., Rebecca M. Mick und Teresita Kashyap. „Equibiaxial elongational rheology of entangled polystyrene melts“. Journal of Rheology 63, Nr. 1 (Januar 2019): 157–65. http://dx.doi.org/10.1122/1.5062161.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
13

Warr, Gregory G. „Shear and elongational rheology of ternary microemulsions“. Colloids and Surfaces A: Physicochemical and Engineering Aspects 103, Nr. 3 (Oktober 1995): 273–79. http://dx.doi.org/10.1016/0927-7757(95)03296-p.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
14

Collier, John R., Ovidiu Romanoschi und Simioan Petrovan. „Elongational rheology of polymer melts and solutions“. Journal of Applied Polymer Science 69, Nr. 12 (19.09.1998): 2357–67. http://dx.doi.org/10.1002/(sici)1097-4628(19980919)69:12<2357::aid-app7>3.0.co;2-7.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
15

Yang, Lixin, Takashi Uneyama, Yuichi Masubuchi und Yuya Doi. „Nonlinear Shear and Elongational Rheology of Poly(propylene carbonate)“. Nihon Reoroji Gakkaishi 50, Nr. 1 (15.02.2022): 127–35. http://dx.doi.org/10.1678/rheology.50.127.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
16

Sammons, Rhea J., John R. Collier, Timothy G. Rials und Simioan Petrovan. „Rheology of 1-butyl-3-methylimidazolium chloride cellulose solutions. III. Elongational rheology“. Journal of Applied Polymer Science 110, Nr. 5 (05.12.2008): 3203–8. http://dx.doi.org/10.1002/app.28928.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
17

Tiwari, Manish K., Alexander V. Bazilevsky, Alexander L. Yarin und Constantine M. Megaridis. „Elongational and shear rheology of carbon nanotube suspensions“. Rheologica Acta 48, Nr. 6 (16.04.2009): 597–609. http://dx.doi.org/10.1007/s00397-009-0354-z.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
18

Wang, Jun, Wei Yu, Chixing Zhou, Ying Guo, Wim Zoetelief und Paul Steeman. „Elongational rheology of glass fiber-filled polymer composites“. Rheologica Acta 55, Nr. 10 (15.08.2016): 833–45. http://dx.doi.org/10.1007/s00397-016-0960-5.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
19

Collier, John R., Simioan Petrovan, Nick Hudson und Xiaoling Wei. „Elongational rheology by different methods and orientation number“. Journal of Applied Polymer Science 105, Nr. 6 (2007): 3551–61. http://dx.doi.org/10.1002/app.26413.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
20

Sugimoto, Masataka. „Control of Strain Hardening of Polymer Melts under Elongational Flow“. Nihon Reoroji Gakkaishi 36, Nr. 5 (2008): 219–28. http://dx.doi.org/10.1678/rheology.36.219.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
21

Wei, X., J. R. Collier und S. Petrovan. „Shear and elongational rheology of polyethylenes with different molecular characteristics. I. Shear rheology“. Journal of Applied Polymer Science 105, Nr. 2 (2007): 309–16. http://dx.doi.org/10.1002/app.25724.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
22

Stefanescu, Eduard A., Simioan Petrovan, William H. Daly und Ioan I. Negulescu. „Elongational Rheology of Polymer/Clay Dispersions: Determination of Orientational Extent in Elongational Flow Processes“. Macromolecular Materials and Engineering 293, Nr. 4 (14.04.2008): 303–9. http://dx.doi.org/10.1002/mame.200700371.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
23

Kurose, Takashi, Tatsuhiro Takahashi und Kiyohito Koyama. „Uniaxial Elongational Viscosity of FEP/ a Small Amount of PTFE Blends“. Nihon Reoroji Gakkaishi 31, Nr. 4 (2003): 195–200. http://dx.doi.org/10.1678/rheology.31.195.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
24

Nishioka, Akihiro, Mihoko Nishio, Masataka Sugimoto, Tatsuhiro Takahashi, Tomonori Koda, Susumu Ikeda und Kiyohito Koyama. „Uniaxial Elongational Viscosities of Ethylene Ionomer / Styrene-co-Methacrylic Acid Blends“. Nihon Reoroji Gakkaishi 32, Nr. 1 (2004): 49–53. http://dx.doi.org/10.1678/rheology.32.49.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
25

Kurose, Takashi, Tatsuhiro Takahashi, Masataka Sugimoto, Takashi Taniguchi und Kiyohito Koyama. „Uniaxial Elongational Viscosity of PC/ A Small Amount of PTFE Blend“. Nihon Reoroji Gakkaishi 33, Nr. 4 (2005): 173–82. http://dx.doi.org/10.1678/rheology.33.173.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
26

Shirakashi, Masataka, Tsutomu Takahashi und Win Shwe Maw. „Planar Elongational Rheometry Using Slit Entry Flow in Hele-Shaw Cell“. Nihon Reoroji Gakkaishi 33, Nr. 4 (2005): 183–90. http://dx.doi.org/10.1678/rheology.33.183.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
27

Rolón-Garrido, Víctor H., und Manfred H. Wagner. „Elongational rheology and cohesive fracture of photo-oxidated LDPE“. Journal of Rheology 58, Nr. 1 (Januar 2014): 199–222. http://dx.doi.org/10.1122/1.4853395.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
28

Müller, A. J., J. A. Odell und A. Keller. „Elongational flow and rheology of monodisperse polymers in solution“. Journal of Non-Newtonian Fluid Mechanics 30, Nr. 2-3 (Januar 1988): 99–118. http://dx.doi.org/10.1016/0377-0257(88)85018-3.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
29

Lacaze, J. M., G. Marin und Ph Monge. „Elongational rheology of polyethylene melts ? temporary network constitutive laws“. Rheologica Acta 27, Nr. 5 (September 1988): 540–45. http://dx.doi.org/10.1007/bf01329354.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
30

Rolón-Garrido, Víctor Hugo, Radek Pivokonsky, Petr Filip, Martin Zatloukal und Manfred H. Wagner. „Modelling elongational and shear rheology of two LDPE melts“. Rheologica Acta 48, Nr. 6 (19.05.2009): 691–97. http://dx.doi.org/10.1007/s00397-009-0366-8.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
31

Kabamba, Eddy Twite, und Denis Rodrigue. „The effect of recycling on LDPE foamability: Elongational rheology“. Polymer Engineering & Science 48, Nr. 1 (2007): 11–18. http://dx.doi.org/10.1002/pen.20807.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
32

Takeda, Keiko, Sathish Kumar Sukumaran, Masataka Sugimoto, Kiyohito Koyama und Yuichi Masubuchi. „Test of the Stretch/Orientation-Induced Reduction of Friction for Biaxial Elongational Flow via Primitive Chain Network Simulation“. Nihon Reoroji Gakkaishi 43, Nr. 3_4 (2015): 63–39. http://dx.doi.org/10.1678/rheology.43.63.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
33

Minegishi, Akinari, Akihiro Nishioka, Tatsuhiro Takahashi, Yuichi Masubuchi, Jun-ichi Takimoto und Kiyohito Koyama. „A Novel Elongational Rheology Control of PS by SBS and Dicumyl Peroxide“. Nihon Reoroji Gakkaishi 33, Nr. 3 (2005): 141–44. http://dx.doi.org/10.1678/rheology.33.141.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
34

Kakuda, Masaki, Tatsuhiro Takahashi und Kiyohito Koyama. „Elongational Viscotiy of Polymer Composite Including Hydrophilic or Hydrophobic Silica Nano-Particles“. Nihon Reoroji Gakkaishi 34, Nr. 3 (2006): 181–84. http://dx.doi.org/10.1678/rheology.34.181.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
35

Hasegawa, Tomiichi, Makoto Suzuki, Tsuneo Adachi und Akiomi Ushida. „Elongational Stress and Velocity of Dilute Polymer Solutions Flowing into Small Apertures“. Nihon Reoroji Gakkaishi 46, Nr. 4 (14.09.2018): 165–69. http://dx.doi.org/10.1678/rheology.46.165.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
36

Arzideh, Seyed Mahmoud, Andrés Córdoba, Jeffrey G. Ethier, Jay D. Schieber und David C. Venerus. „Equibiaxial elongation of entangled polyisobutylene melts: Experiments and theoretical predictions“. Journal of Rheology 68, Nr. 3 (29.03.2024): 341–53. http://dx.doi.org/10.1122/8.0000809.

Der volle Inhalt der Quelle
Annotation:
Equibiaxial elongational deformations are omnipresent in polymer processing technologies. The challenge of generating well-controlled equibiaxial elongational deformations in the laboratory has, however, severely inhibited progress on understanding the rheology of polymeric liquids and other complex fluids in this flow. More recently, a novel technique known as continuous lubricated squeezing flow has been developed that allows for rheological measurements in equibiaxial elongational deformations. In the present study, we examine the rheological behavior of two entangled polyisobutylene (PIB) melts with different molecular weight distributions in constant strain rate equibiaxial elongation flows. These new data are compared with predictions from two molecular models for entangled polymer melts inspired by the idea that entanglements dominate the relaxation dynamics. One model is the discrete slip-link model (DSM), and the other is known as the Rolie Double Poly (RDP) model. For the PIB with a relatively narrow molecular weight distribution, the predictions of both models are in good agreement with experiments and the DSM gives nearly quantitative agreement. For the broad molecular weight distribution PIB, both the DSM and RDP model predict strain hardening, which is not observed in the experiments.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
37

Murashima, Takahiro, Katsumi Hagita und Toshihiro Kawakatsu. „Elongational Viscosity of Weakly Entangled Polymer Melt via Coarse-Grained Molecular Dynamics Simulation“. Nihon Reoroji Gakkaishi 46, Nr. 5 (14.12.2018): 207–20. http://dx.doi.org/10.1678/rheology.46.207.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
38

Otsuki, Yasuhiko. „Numerical Simulation of Various Polymer Processing with Considering Elongational Rheology“. Seikei-Kakou 28, Nr. 11 (20.10.2016): 446–49. http://dx.doi.org/10.4325/seikeikakou.28.446.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
39

Shiromoto, Seiji, Tarou Miyazawa und Kiyohito Koyama. „Study on Uniaxial Elongational Viscosity and Vacuum Molding Processability of the PP/PE Blends“. Nihon Reoroji Gakkaishi 31, Nr. 5 (2003): 321–27. http://dx.doi.org/10.1678/rheology.31.321.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
40

Nishioka, Akihiro, Akinari Minegishi, Tatsuhiro Takahashi, Tomonori Koda, Yuichi Masubuchi, Jun-ichi Takimoto und Kiyohito Koyama. „The Influence of Heat Treatment on Uniaxial Elongational Flow Behavior of PS/SBS Blends“. Nihon Reoroji Gakkaishi 34, Nr. 4 (2006): 189–97. http://dx.doi.org/10.1678/rheology.34.189.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
41

Masubuchi, Yuichi, Lixin Yang, Takashi Uneyama und Yuya Doi. „Analysis of Elongational Viscosity of Entangled Poly (Propylene Carbonate) Melts by Primitive Chain Network Simulations“. Polymers 14, Nr. 4 (14.02.2022): 741. http://dx.doi.org/10.3390/polym14040741.

Der volle Inhalt der Quelle
Annotation:
It has been established that the elongational rheology of polymers depends on their chemistry. However, the analysis of experimental data has been reported for only a few polymers. In this study, we analyzed the elongational viscosity of poly (propylene carbonate) (PPC) melts in terms of monomeric friction via primitive chain network simulations. By incorporating a small polydispersity of materials, the linear viscoelastic response was semi-quantitatively reproduced. Owing to this agreement, we determined units of time and modulus to carry out elongational simulations. The simulation with constant monomeric friction overestimated elongational viscosity, whereas it nicely captured the experimental data if friction decreased with increasing segment orientation. To see the effect of chemistry, we also conducted the simulation for a polystyrene (PS) melt, which has a similar entanglement number per chain and a polydispersity index. The results imply that PPC and PS behave similarly in terms of the reduction of friction under fast deformations.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
42

Nishioka, Akihiro, Mihoko Nishio, Tatsuhiro Takahashi und Kiyohito Koyama. „Uniaxial, Biaxial and Planar Elongational Viscosities for lonomers Based on Poly(Ethylene-co-Methacrylic Acid)“. Nihon Reoroji Gakkaishi 32, Nr. 2 (2004): 65–69. http://dx.doi.org/10.1678/rheology.32.65.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
43

Yamaguchi, Masayuki, Tadashi Yokohara und Mohd Amran Bin Md Ali. „Effect of Flexible Fibers on Rheological Properties of Poly(Lactic Acid) Composites under Elongational Flow“. Nihon Reoroji Gakkaishi 41, Nr. 3 (2013): 129–35. http://dx.doi.org/10.1678/rheology.41.129.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
44

Meng, Cong, und Jin-ping Qu. „Structure-property relationships in polypropylene/poly(ethylene-co-octene)/multiwalled carbon nanotube nanocomposites prepared via a novel eccentric rotor extruder“. Journal of Polymer Engineering 38, Nr. 5 (25.04.2018): 427–35. http://dx.doi.org/10.1515/polyeng-2017-0125.

Der volle Inhalt der Quelle
Annotation:
Abstract In this work, polypropylene/poly(ethylene-co-octene)/multiwalled carbon nanotube (PP/POE/MWCNT) nanocomposites with different contents of MWCNTs were prepared by an eccentric rotor extruder to obtain engineering materials with excellent performance capability. Microphotographs (scanning electron microscopy and transmission electron microscopy) and dynamic mechanical analysis indicate that the MWCNTs were well dispersed in the polymer matrix under the elongation flow. The crystallization behavior was explored by X-ray diffraction and differential scanning calorimetry. The results show that MWCNTs promote heterogeneous nucleation and improve the To, Tc and Te values of the composites. On the basis of the rheology analysis, the complex viscosity of the PP/POE/MWCNT composites increased and formed an obvious Newton plat in the low-frequency range; both the G′ and G″ of all the samples increased monotonically, and a percolation threshold appeared for 1 wt% MWCNTs. Thus, the mechanical properties of the nanocomposites prepared under an elongation flow lead to an effective strengthening of PP/POE better than under a shear flow. This work provides a novel method based on elongational rheology to prepare engineered materials that possess excellent performance capabilities.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
45

Hirschberg, V., S. Lyu und M. G. Schußmann. „Complex polymer topologies in blends: Shear and elongational rheology of linear/pom-pom polystyrene blends“. Journal of Rheology 67, Nr. 2 (März 2023): 403–15. http://dx.doi.org/10.1122/8.0000544.

Der volle Inhalt der Quelle
Annotation:
The shear and elongational rheology of linear and pom-pom shaped polystyrene (PS) blends was investigated experimentally and modeled using constitutive models such as the Doi–Edwards and the molecular stress function (MSF) model. The pom-pom molecule is the simplest topology to combine shear thinning with strain hardening in elongational flow. A PS pom-pom with a self-entangled backbone (Mw,bb = 280 kg mol−1) and 22 entangled sidearms (Mw,a = 22 kg mol−1) at each star was blended with two linear PS with weight average molecular weights of Mw = 43 and 90 kg mol−1 and low polydispersities (Ð < 1.05). A semilogarithmic relationship between the weight content of the pom-pom, ϕpom-pom, and the zero-shear viscosity was found. Whereas the pure pom-pom has in uniaxial elongational flow at T = 160 °C strain hardening factors (SHFs) of SHF ≈100, similar values can be found in blends with up to ϕpom-pom = 50 wt. % in linear PS43k and PS90k. By blending only 2 wt. % pom-pom with linear PS43k, SHF = 10 can still be observed. Furthermore, above ϕpom-pom = 5–10 wt. %, the uniaxial extensional behavior can be well-described with the MSF model with a single parameter set for each linear PS matrix. The results show that the relationship between shear and elongational melt behavior, i.e., zero-shear viscosity and SHF, can be uncoupled and customized tuned by blending linear and pom-pom shaped polymers and very straightforwardly predicted theoretically. This underlines also the possible application of well-designed branched polymers as additives in recycling.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
46

Rajabian, Mahmoud, Ghassem Naderi, Charles Dubois und Pierre G. Lafleur. „Measurements and model predictions of transient elongational rheology of polymeric nanocomposites“. Rheologica Acta 49, Nr. 1 (13.11.2009): 105–18. http://dx.doi.org/10.1007/s00397-009-0395-3.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
47

Wen, Jin Song, Yao Huan Liang und Zhi Min Chen. „Numerical Simulation of Elongational Flow in Polymer Vane Extruder“. Advanced Materials Research 421 (Dezember 2011): 415–18. http://dx.doi.org/10.4028/www.scientific.net/amr.421.415.

Der volle Inhalt der Quelle
Annotation:
Polymer vane extruder is a new type of extrusion machine, whose plasticating and conveying method is based on elongational rheology. The vane extruder has many advantages over conventional plasticating method, such as shortening thermo-mechanical experience of plasticating and conveying, reducing the energy consumption of plasticating and conveying, and improving adaptability to diverse materials. Currently, research for characteristics of vane extruder is mostly focused on theoretical derivation and experiments. However, these methods lead to high consumption of time and energy, and cannot provide an intuitive view of the flow. In this paper, 3D finite element numerical simulation was performed to investigate the flow in one of the vane units with POLYFLOW. The elongation flow was investigated by analyzing velocity field, pressure field, local-shear-rate distribution and mixing index distribution. The results show that numerical simulation is an efficient method to optimize process parameters and the structure of vane extruder.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
48

Kato, Manabu, Tsutomu Takahashi und Masataka Shirakashi. „Steady Planar Elongational Viscosity of CTAB/NaSal Aqueous Solutions Measured in a 4-Roll Mill Flow Cell.“ Nihon Reoroji Gakkaishi 30, Nr. 5 (2002): 283–87. http://dx.doi.org/10.1678/rheology.30.283.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
49

Okawara, Makoto, Tomiichi Hasegawa, Nobuhiro Yamada und Takatsune Narumi. „Experimental Study of Pressure Loss and Rheo-Optical Behavior of CTAB/NaSal Aqueous Solution under Elongational Flow“. Nihon Reoroji Gakkaishi 37, Nr. 1 (2009): 39–46. http://dx.doi.org/10.1678/rheology.37.39.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
50

Masubuchi, Yuichi, Giovanni Ianniruberto und Giuseppe Marrucci. „Primitive Chain Network Simulations of Entangled Melts of Symmetric and Asymmetric Star Polymers in Uniaxial Elongational Flows“. Nihon Reoroji Gakkaishi 49, Nr. 3 (15.06.2021): 171–78. http://dx.doi.org/10.1678/rheology.49.171.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
Wir bieten Rabatte auf alle Premium-Pläne für Autoren, deren Werke in thematische Literatursammlungen aufgenommen wurden. Kontaktieren Sie uns, um einen einzigartigen Promo-Code zu erhalten!

Zur Bibliographie