Dissertationen zum Thema „Elliptic method“
Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an
Machen Sie sich mit Top-50 Dissertationen für die Forschung zum Thema "Elliptic method" bekannt.
Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.
Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.
Sehen Sie die Dissertationen für verschiedene Spezialgebieten durch und erstellen Sie Ihre Bibliographie auf korrekte Weise.
Savchuk, Tatyana. „The multiscale finite element method for elliptic problems“. Ann Arbor, Mich. : ProQuest, 2007. http://gateway.proquest.com/openurl?url_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:dissertation&res_dat=xri:pqdiss&rft_dat=xri:pqdiss:3245025.
Der volle Inhalt der QuelleTitle from PDF title page (viewed Mar. 18, 2008). Source: Dissertation Abstracts International, Volume: 67-12, Section: B, page: 7120. Adviser: Zhangxin (John) Chen. Includes bibliographical references.
Déchène, Isabelle. „Quaternion algebras and the graph method for elliptic curves“. Thesis, McGill University, 1998. http://digitool.Library.McGill.CA:80/R/?func=dbin-jump-full&object_id=21537.
Der volle Inhalt der QuelleLoubenets, Alexei. „A new finite element method for elliptic interface problems“. Licentiate thesis, KTH, Numerical Analysis and Computer Science, NADA, 2006. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-3908.
Der volle Inhalt der QuelleA finite element based numerical method for the two-dimensional elliptic interface problems is presented. Due to presence of these interfaces the problem will contain discontinuities in the coefficients and singularities in the right hand side that are represented by delta functionals along the interface. As a result, the solution to the interface problem and its derivatives may have jump discontinuities. The introduced method is specifically designed to handle this features of the solution using non-body fitted grids, i.e. the grids are not aligned with the interfaces.
The main idea is to modify the standard basis function in the vicinity of the interface such that the jump conditions are well approximated. The resulting finite element space is, in general, non-conforming. The interface itself is represented by a set of Lagrangian markers together with a parametric description connecting them. To illustrate the abilities of the method, numerical tests are presented. For all the considered test problems, the introduced method has been shown to have super-linear or second order of convergence. Our approach is also compared with the standard finite element method.
Finally, the method is applied to the interface Stokes problem, where the interface represents an elastic stretched band immersed in fluid. Since we assume the fluid to be homogeneous, the Stokes equations are reduced to a sequence of three Poisson problems that are solved with our method. The numerical results agree well with those found in the literature.
Déchène, Isabelle. „Quaternion algebras and the graph method for elliptic curves“. Thesis, National Library of Canada = Bibliothèque nationale du Canada, 1999. http://www.collectionscanada.ca/obj/s4/f2/dsk1/tape9/PQDD_0024/MQ50750.pdf.
Der volle Inhalt der QuelleElfverson, Daniel. „Discontinuous Galerkin Multiscale Methods for Elliptic Problems“. Thesis, Uppsala universitet, Institutionen för informationsteknologi, 2010. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-138960.
Der volle Inhalt der QuelleGu, Yaguang. „Nonlinear optimized Schwarz preconditioning for heterogeneous elliptic problems“. HKBU Institutional Repository, 2019. https://repository.hkbu.edu.hk/etd_oa/637.
Der volle Inhalt der QuelleBen, Romdhane Mohamed. „Higher-Degree Immersed Finite Elements for Second-Order Elliptic Interface Problems“. Diss., Virginia Tech, 2011. http://hdl.handle.net/10919/39258.
Der volle Inhalt der QuellePh. D.
Alsaedy, Ammar, und Nikolai Tarkhanov. „The method of Fischer-Riesz equations for elliptic boundary value problems“. Universität Potsdam, 2012. http://opus.kobv.de/ubp/volltexte/2012/6179/.
Der volle Inhalt der QuelleBennett, G. N. „A semi-linear elliptic problem arising in the theory of superconductivity“. Thesis, University of Sussex, 2000. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.340827.
Der volle Inhalt der QuelleYang, Zhiyun. „A Cartesian grid method for elliptic boundary value problems in irregular regions /“. Thesis, Connect to this title online; UW restricted, 1996. http://hdl.handle.net/1773/6759.
Der volle Inhalt der QuelleFalk, Jenny. „On Pollard's rho method for solving the elliptic curve discrete logarithm problem“. Thesis, Linnéuniversitetet, Institutionen för matematik (MA), 2019. http://urn.kb.se/resolve?urn=urn:nbn:se:lnu:diva-85516.
Der volle Inhalt der QuelleChibi, Ahmed-Salah. „Defect correction and Galerkin's method for second-order elliptic boundary value problems“. Thesis, Imperial College London, 1989. http://hdl.handle.net/10044/1/47378.
Der volle Inhalt der QuelleChen, Xianjin. „Analysis and computation of multiple unstable solutions to nonlinear elliptic systems“. [College Station, Tex. : Texas A&M University, 2008. http://hdl.handle.net/1969.1/ETD-TAMU-2990.
Der volle Inhalt der QuelleWiegmann, Andreas. „The explicit jump immersed interface method and interface problems for differential equations /“. Thesis, Connect to this title online; UW restricted, 1998. http://hdl.handle.net/1773/5774.
Der volle Inhalt der QuellePrinja, Gaurav Kant. „Adaptive solvers for elliptic and parabolic partial differential equations“. Thesis, University of Manchester, 2010. https://www.research.manchester.ac.uk/portal/en/theses/adaptive-solvers-for-elliptic-and-parabolic-partial-differential-equations(f0894eb2-9e06-41ff-82fd-a7bde36c816c).html.
Der volle Inhalt der QuellePoullikkas, Andreas. „The Method of Fundamental Solutions for the solution of elliptic boundary value problems“. Thesis, Loughborough University, 1997. https://dspace.lboro.ac.uk/2134/27141.
Der volle Inhalt der QuelleAndrš, David. „Adaptive hp-FEM for elliptic problems in 3D on irregular meshes“. To access this resource online via ProQuest Dissertations and Theses @ UTEP, 2008. http://0-proquest.umi.com.lib.utep.edu/login?COPT=REJTPTU0YmImSU5UPTAmVkVSPTI=&clientId=2515.
Der volle Inhalt der QuelleDolzmann, Georg. „Campanato-Ungleichungen für Differenzenverfahren und finite Elemente“. Bonn : [Math.-Naturwiss. Fak. der Univ.], 1993. http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&doc_number=006605726&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA.
Der volle Inhalt der QuelleHitchcock, Yvonne Roslyn. „Elliptic Curve Cryptography for Lightweight Applications“. Queensland University of Technology, 2003. http://eprints.qut.edu.au/15838/.
Der volle Inhalt der QuelleAlonso, Nicomedes III. „An alternating-direction Sinc-Galerkin method for elliptic problems on finite and infinite domains“. Diss., Montana State University, 2009. http://etd.lib.montana.edu/etd/2009/alonso/AlonsoN0509.pdf.
Der volle Inhalt der QuelleLee, Sara [Verfasser], und Thomas [Akademischer Betreuer] Carraro. „Adaptive Multirate Method for Coupled Parabolic and Elliptic Equations / Sara Lee ; Betreuer: Thomas Carraro“. Heidelberg : Universitätsbibliothek Heidelberg, 2016. http://d-nb.info/1180736559/34.
Der volle Inhalt der QuelleWeissinger, Judith. „Development of a discrete adaptive gridless method for the solution of elliptic partial differential equations“. Thesis, Cranfield University, 2003. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.273483.
Der volle Inhalt der QuelleJin, Jicheng. „Finite element methods for some elliptic problems with singularity and problems on unbounded domains“. HKBU Institutional Repository, 2004. http://repository.hkbu.edu.hk/etd_ra/597.
Der volle Inhalt der QuelleRohe, Stacy. „Investigation of the accuracy of Grover's method when solving for the mutual inductance of two single-layer coaxial coils“. Diss., Columbia, Mo. : University of Missouri-Columbia, 2005. http://hdl.handle.net/10355/4266.
Der volle Inhalt der QuelleThe entire dissertation/thesis text is included in the research.pdf file; the official abstract appears in the short.pdf file (which also appears in the research.pdf); a non-technical general description, or public abstract, appears in the public.pdf file. Title from title screen of research.pdf file viewed on (December 19, 2006) Includes bibliographical references.
Bessette, Gregory Carl. „Modeling of impact problems using an H-adaptive, explicit Lagrangian finite element method in three dimensions /“. Full text (PDF) from UMI/Dissertation Abstracts International, 2000. http://wwwlib.umi.com/cr/utexas/fullcit?p3004213.
Der volle Inhalt der QuelleRockstroh, Parousia. „Boundary value problems for the Laplace equation on convex domains with analytic boundary“. Thesis, University of Cambridge, 2018. https://www.repository.cam.ac.uk/handle/1810/273939.
Der volle Inhalt der QuelleCisternino, Marco. „A parallel second order Cartesian method for elliptic interface problems and its application to tumor growth model“. Phd thesis, Université Sciences et Technologies - Bordeaux I, 2012. http://tel.archives-ouvertes.fr/tel-00690743.
Der volle Inhalt der QuelleTonn, Timo [Verfasser]. „Reduced-Basis Method (RBM) for Non-Affine Elliptic Parametrized PDEs : (Motivated by Optimization in Hydromechanics) / Timo Tonn“. Ulm : Universität Ulm. Fakultät für Mathematik und Wirtschaftswissenschaften, 2012. http://d-nb.info/1026992222/34.
Der volle Inhalt der QuelleApel, Th, und S. Nicaise. „The finite element method with anisotropic mesh grading for elliptic problems in domains with corners and edges“. Universitätsbibliothek Chemnitz, 1998. http://nbn-resolving.de/urn:nbn:de:bsz:ch1-199801355.
Der volle Inhalt der QuelleKulkarni, Mandar S. „Multi-coefficient Dirichlet Neumann type elliptic inverse problems with application to reflection seismology“. Birmingham, Ala. : University of Alabama at Birmingham, 2009. https://www.mhsl.uab.edu/dt/2010r/kulkarni.pdf.
Der volle Inhalt der QuelleTitle from PDF t.p. (viewed July 21, 2010). Additional advisors: Thomas Jannett, Tsun-Zee Mai, S. S. Ravindran, Günter Stolz, Gilbert Weinstein. Includes bibliographical references (p. 59-64).
HIRATA, Tomio, und Daisuke ADACHI. „Refined Computations for Points of the Form 2kP Based on Montgomery Trick“. Institute of Electronics, Information and Communication Engineers, 2006. http://hdl.handle.net/2237/15065.
Der volle Inhalt der QuelleKay, David. „The p- and hp- finite element method applied to a class of non-linear elliptic partial differential equations“. Thesis, University of Leicester, 1997. http://hdl.handle.net/2381/30510.
Der volle Inhalt der QuelleJosyula, Sai Prashanth. „On the Applicability of a Cache Side-Channel Attack on ECDSA Signatures : The Flush+Reload attack on the point multiplication in ECDSA signature generation process“. Thesis, Blekinge Tekniska Högskola, Institutionen för datalogi och datorsystemteknik, 2015. http://urn.kb.se/resolve?urn=urn:nbn:se:bth-10820.
Der volle Inhalt der QuelleHerbrych, Daniel. „Generování eliptických křivek pro kryptografický protokol“. Master's thesis, Vysoké učení technické v Brně. Fakulta elektrotechniky a komunikačních technologií, 2019. http://www.nusl.cz/ntk/nusl-401955.
Der volle Inhalt der QuelleRösel, Simon. „Approximation of nonsmooth optimization problems and elliptic variational inequalities with applications to elasto-plasticity“. Doctoral thesis, Humboldt-Universität zu Berlin, Mathematisch-Naturwissenschaftliche Fakultät, 2017. http://dx.doi.org/10.18452/17778.
Der volle Inhalt der QuelleOptimization problems and variational inequalities over Banach spaces are subjects of paramount interest since these mathematical problem classes serve as abstract frameworks for numerous applications. Solutions to these problems usually cannot be determined directly. Following an introduction, part II presents several approximation methods for convex-constrained nonsmooth variational inequality and optimization problems, including discretization and regularization approaches. We prove the consistency of a general class of perturbations under certain density requirements with respect to the convex constraint set. We proceed with the study of pointwise constraint sets in Sobolev spaces, and several density results are proven. The quasi-static contact problem of associative elasto-plasticity with hardening at small strains is considered in part III. The corresponding time-incremental problem can be equivalently formulated as a nonsmooth, constrained minimization problem, or, as a mixed variational inequality problem over the convex constraint. We propose an infinite-dimensional path-following semismooth Newton method for the solution of the time-discrete plastic contact problem, where each path-problem can be solved locally at a superlinear rate of convergence with contraction rates independent of the discretization. Several numerical examples support the theoretical results. The last part is devoted to the quasi-static problem of perfect (Prandtl-Reuss) plasticity. Building upon recent developments in the study of the (incremental) primal problem, we establish a reduced formulation which is shown to be a Fenchel predual problem of the corresponding stress problem. This allows to derive new primal-dual optimality conditions. In order to solve the time-discrete problem, a modified visco-plastic regularization is proposed, and we prove the convergence of this new approximation scheme.
Abu-Mahfouz, Adnan Mohammed. „Elliptic curve cryptosystem over optimal extension fields for computationally constrained devices“. Diss., University of Pretoria, 2004. http://hdl.handle.net/2263/25330.
Der volle Inhalt der QuelleDissertation (MEng (Computer Engineering))--University of Pretoria, 2006.
Electrical, Electronic and Computer Engineering
unrestricted
畔上, 秀幸, und Hideyuki Azegami. „領域最適化問題の一解法“. 日本機械学会, 1994. http://hdl.handle.net/2237/7238.
Der volle Inhalt der QuelleBalko, Marek. „Studium přenosu tepla turbulentním prouděním v studeném héliovém plynu v experimentu s Rayleigh-Bénardovou konvekcí na ÚPT AV v Brně“. Master's thesis, Vysoké učení technické v Brně. Fakulta strojního inženýrství, 2021. http://www.nusl.cz/ntk/nusl-444294.
Der volle Inhalt der QuelleOdeyemi, Tinuade A. „Numerical Modelling of van der Waals Fluids“. Thèse, Université d'Ottawa / University of Ottawa, 2012. http://hdl.handle.net/10393/22661.
Der volle Inhalt der QuelleMarcati, Carlo. „Discontinuous hp finite element methods for elliptic eigenvalue problems with singular potentials : with applications to quantum chemistry“. Thesis, Sorbonne université, 2018. http://www.theses.fr/2018SORUS349.
Der volle Inhalt der QuelleIn this thesis, we study elliptic eigenvalue problems with singular potentials, motivated by several models in physics and quantum chemistry, and we propose a discontinuous Galerkin hp finite element method for their solution. In these models, singular potentials occur naturally (associated with the interaction between nuclei and electrons). Our analysis starts from elliptic regularity in non homogeneous weighted Sobolev spaces. We show that elliptic operators with singular potential are isomorphisms in those spaces and that we can derive weighted analytic type estimates on the solutions to the linear eigenvalue problems. The isotropically graded hp method provides therefore approximations that converge with exponential rate to the solution of those eigenproblems. We then consider a wide class of nonlinear eigenvalue problems, and prove the convergence of numerical solutions obtained with the symmetric interior penalty discontinuous Galerkin method. Furthermore, when the non linearity is polynomial, we show that we can obtain the same analytic type estimates as in the linear case, thus the numerical approximation converges exponentially. We also analyze under what conditions the eigenvalue converges at an increased rate compared to the eigenfunctions. For both the linear and nonlinear case, we perform numerical tests whose objective is both to validate the theoretical results, but also evaluate the role of sources of errors not considered previously in the analysis, and to help in the design of hp/dG graded methods for more complex problems
Brandman, Jeremy. „A level-set method for solving elliptic eigenvalue problems on hypersurfaces ; and, Finite-time blow-up of L[superscript infty] weak solutions of an aggregation equation“. Diss., Restricted to subscribing institutions, 2008. http://proquest.umi.com/pqdweb?did=1619423481&sid=1&Fmt=2&clientId=1564&RQT=309&VName=PQD.
Der volle Inhalt der QuelleLi, Boning. „Extending the scaled boundary finite-element method to wave diffraction problems“. University of Western Australia. School of Civil and Resource Engineering, 2007. http://theses.library.uwa.edu.au/adt-WU2007.0173.
Der volle Inhalt der QuelleGaršvaitė, Skaistė. „Dvimatės elipsinės lygties su nelokaliąja sąlyga sprendimas baigtinių skirtumų metodu“. Master's thesis, Lithuanian Academic Libraries Network (LABT), 2008. http://vddb.library.lt/obj/LT-eLABa-0001:E.02~2008~D_20080619_122640-56101.
Der volle Inhalt der QuelleIn this work we consider two dimensional elliptic equation on the rectangle with non local condition by finite difference method. We solve two dimensional equations instead one intricate differential equation. A short review of maximum principle and solution finding with iteration method, and the proper account finding with two dimensional case. Estimated differential equationerror, this making calculate elliptic equation difference method. Finally we solve particilar example with different steps.
Judge, Lyndon Virginia. „Design Methods for Cryptanalysis“. Thesis, Virginia Tech, 2012. http://hdl.handle.net/10919/35980.
Der volle Inhalt der QuelleMaster of Science
Johansson, Angela. „Distributed System for Factorisation of Large Numbers“. Thesis, Linköping University, Department of Electrical Engineering, 2004. http://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-1883.
Der volle Inhalt der QuelleThis thesis aims at implementing methods for factorisation of large numbers. Seeing that there is no deterministic algorithm for finding the prime factors of a given number, the task proves rather difficult. Luckily, there have been developed some effective probabilistic methods since the invention of the computer so that it is now possible to factor numbers having about 200 decimal digits. This however consumes a large amount of resources and therefore, virtually all new factorisations are achieved using the combined power of many computers in a distributed system.
The nature of the distributed system can vary. The original goal of the thesis was to develop a client/server system that allows clients to carry out a portion of the overall computations and submit the result to the server.
Methods for factorisation discussed for implementation in the thesis are: the quadratic sieve, the number field sieve and the elliptic curve method. Actually implemented was only a variant of the quadratic sieve: the multiple polynomial quadratic sieve (MPQS).
Krinshnamurthy, R. „Kinetic Flux Vector Splitting Method On Moving Grids (KFMG) For Unsteady Aerodynamics And Aeroelasticity“. Thesis, Indian Institute of Science, 2001. http://hdl.handle.net/2005/288.
Der volle Inhalt der QuelleTriplett, Angela Lynn. „Vibration-Based Energy Harvesting with Essential Non-Linearities“. University of Akron / OhioLINK, 2011. http://rave.ohiolink.edu/etdc/view?acc_num=akron1322493879.
Der volle Inhalt der QuelleCosta, Gustavo Silvestre do Amaral. „Existência de soluções não-negativas para uma classe de problemas semilineares elípticos indefinidos“. Universidade Federal de Goiás, 2017. http://repositorio.bc.ufg.br/tede/handle/tede/7021.
Der volle Inhalt der QuelleApproved for entry into archive by Luciana Ferreira (lucgeral@gmail.com) on 2017-03-28T11:31:51Z (GMT) No. of bitstreams: 2 Dissertação - Gustavo Silvestre do Amaral Costa - 2017.pdf: 671324 bytes, checksum: fdf29c0b102f3ee24a198d5616ecd4b4 (MD5) license_rdf: 0 bytes, checksum: d41d8cd98f00b204e9800998ecf8427e (MD5)
Made available in DSpace on 2017-03-28T11:31:51Z (GMT). No. of bitstreams: 2 Dissertação - Gustavo Silvestre do Amaral Costa - 2017.pdf: 671324 bytes, checksum: fdf29c0b102f3ee24a198d5616ecd4b4 (MD5) license_rdf: 0 bytes, checksum: d41d8cd98f00b204e9800998ecf8427e (MD5) Previous issue date: 2017-03-17
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior - CAPES
In this work we will discuss the existence of nonnegative solutions for a class of indefinite semilinear elliptic problems: (Pμ) − u = λ1u+μg(x,u)+W(x)f(u), em u = 0 , sobre ∂ , where is a bounded smooth domain in RN, N ≥ 3, μ is a nonnegative parameter, λ1 is the first eigenvalue of the operator − under Dirichlet boundary conditions, W ∈ C(¯ ,R) is a weight function, f ∈ C(R,R), and g : ¯ ×R→R is a Carathéodory locally bounded function, i.e, for every s0 > 0, there is M := M(s0) > 0 such that |g(x,s)| ≤M for 0 ≤ |s| ≤ s0 and for almost every x ∈ ¯ .
Neste trabalho discutiremos a existência de soluções não negativas para os seguintes problemas semilineares elípticos indefinidos: (Pμ) − u = λ1u+μg(x,u)+W(x)f(u), em u = 0 , sobre ∂ . onde é um domínio limitado suave de RN, N ≥ 3, λ1 é o primeiro autovalor de − , μ > 0, W ∈ C(¯ ,R) e f ∈ C(R,R), g : ×R→R é uma função Carathéodory localmente limitada, isto é, para todo s0 > 0 existe M(s0) > 0, tal que |g(x,s)| ≤ M(s0), para todo s ∈ [−s0,s0] e q.t.p em ¯ .
Galbraith, Steven Douglas. „Iterations of elliptic curves“. Thesis, Georgia Institute of Technology, 1991. http://hdl.handle.net/1853/28620.
Der volle Inhalt der QuelleMurdoch, Thomas. „Galerkin methods for nonlinear elliptic equations“. Thesis, University of Oxford, 1988. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.329932.
Der volle Inhalt der Quelle