Bücher zum Thema „Elliptic method“
Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an
Machen Sie sich mit Top-50 Bücher für die Forschung zum Thema "Elliptic method" bekannt.
Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.
Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.
Sehen Sie die Bücher für verschiedene Spezialgebieten durch und erstellen Sie Ihre Bibliographie auf korrekte Weise.
Bottasso, Carlo L. Discontinuous dual-primal mixed finite elements for elliptic problems. Hampton, Va: National Aeronautics and Space Administration, Langley Research Center, 2000.
Den vollen Inhalt der Quelle findenQuarteroni, Alfio. Domain decomposition preconditioners for the spectral collocation method. Hampton, Va: National Aeronautics and Space Administration, Langley Research Center, Institute for Computer Applications in Science and Engineering, 1988.
Den vollen Inhalt der Quelle findenPomp, Andreas. The boundary-domain integral method for elliptic systems. Berlin: Springer, 1998.
Den vollen Inhalt der Quelle findenda Veiga, Lourenço Beirão, Konstantin Lipnikov und Gianmarco Manzini. The Mimetic Finite Difference Method for Elliptic Problems. Cham: Springer International Publishing, 2014. http://dx.doi.org/10.1007/978-3-319-02663-3.
Der volle Inhalt der QuellePomp, Andreas. The Boundary-Domain Integral Method for Elliptic Systems. Berlin, Heidelberg: Springer Berlin Heidelberg, 1998. http://dx.doi.org/10.1007/bfb0094576.
Der volle Inhalt der QuelleŽeníšek, A. Nonlinear elliptic and evolution problems and their finite element approximations. Herausgegeben von Whiteman J. R. London: Academic Press, 1990.
Den vollen Inhalt der Quelle findenKang, Kab Seok. Covolume-based integrid transfer operator in P1 nonconforming multigrid method. Hampton, VA: Institute for Computer Applications in Science and Engineering, NASA Langley Research Center, 2002.
Den vollen Inhalt der Quelle findenSchweitzer, Marc Alexander. A Parallel Multilevel Partition of Unity Method for Elliptic Partial Differential Equations. Berlin, Heidelberg: Springer Berlin Heidelberg, 2003.
Den vollen Inhalt der Quelle findenSchweitzer, Marc Alexander. A Parallel Multilevel Partition of Unity Method for Elliptic Partial Differential Equations. Berlin, Heidelberg: Springer Berlin Heidelberg, 2003. http://dx.doi.org/10.1007/978-3-642-59325-3.
Der volle Inhalt der QuelleNumerical approximation methods for elliptic boundary value problems: Finite and boundary elements. United States: Springer Verlag, 2008.
Den vollen Inhalt der Quelle findenChang, Sin-Chung. Solution of elliptic partial differential equations by fast Poisson solvers using a local relaxation factor: I, One-step method. [Washington, D.C.]: National Aeronautics and Space Administration, Scientific and Technical Information Branch, 1986.
Den vollen Inhalt der Quelle findenMitchell, William F. A comparison of adaptive refinement techniques for elliptic problems. Urbana, IL (1304 W. Springfield Ave., Urbana 61801): Dept. of Computer Science, University of Illinois at Urbana-Champaign, 1987.
Den vollen Inhalt der Quelle findenNumerical approximation methods for elliptic boundary value problems: Finite and boundary elements. New York: Springer, 2008.
Den vollen Inhalt der Quelle findenKerkhoven, Thomas. L [infinity] stability of finite element approximations to elliptic gradient equations. Urbana, Ill: Dept. of Computer Science, University of Illinois at Urbana-Champaign, 1988.
Den vollen Inhalt der Quelle findenSmith, Barry F. Domain decomposition: Parallel multilevel methods for elliptic partial differential equations. Cambridge: Cambridge University Press, 1996.
Den vollen Inhalt der Quelle findenChang, Sin-Chung. Solution of elliptic partial differential equations by fast Poisson solvers using a local relaxation factor: II - two-step method. Cleveland, Ohio: Lewis Research Center, 1986.
Den vollen Inhalt der Quelle findenLi, Zi-Cai. Global Superconvergence of Finite Elements for Eliptic Equations and Its Applications: Tuo yuan fang cheng you xian fang fa de zheng ti chao shou lian ji qi ying yong. Beijing: SCIENCE PRESS, 2012.
Den vollen Inhalt der Quelle findenXu, Kun. A gas-kinetic method for hyperbolic-elliptic equations and its application in two-phase fluid flow. Hampton, Va: National Aeronautics and Space Administration, Langley Research Center, 1999.
Den vollen Inhalt der Quelle findenIntroduction to Sobolev spaces and finite element solution of elliptic boundary value problems. London: Academic Press, 1986.
Den vollen Inhalt der Quelle findenRüde, Ulrich. Accurate numerical solution of convection-diffusion problems: Final report on Grant I/72342 of Volkswagen Foundation. Novosibirsk: Publishing House of Institute of Mathematics, 2001.
Den vollen Inhalt der Quelle findenMikhaĭlov, G. A. Vesovye metody Monte-Karlo. Novosibirsk: Izd-vo Sibirskogo otd-nii︠a︡ Rossiĭskoĭ akademii nauk, 2000.
Den vollen Inhalt der Quelle findenTaa̓san, Shlomo. Fourier-Laplace analysis of multigrid waveform relaxation method for hyperbolic equations. Hampton, Va: National Aeronautics and Space Administration, Langley Research Center, 1996.
Den vollen Inhalt der Quelle findenDeville, M. O. Fourier analysis of finite element preconditioned collocation schemes. Hampton, Va: National Aeronautics and Space Administration, Langley Research Center, 1990.
Den vollen Inhalt der Quelle findenDeville, M. O. Fourier analysis of finite element preconditioned collocation schemes. Hampton, Va: National Aeronautics and Space Administration, Langley Research Center, 1990.
Den vollen Inhalt der Quelle finden1945-, Reddy J. N., Hrsg. An introduction to the theory of finite elements. Mineola, N.Y: Dover Publications, 2009.
Den vollen Inhalt der Quelle findenChen, Wenxiong. Methods on nonlinear elliptic equations. [Springfield, MO]: American Institute of Mathematical Sciences, 2010.
Den vollen Inhalt der Quelle findenDer-Chen, Chang, Furutani Kenro, Iwasaki Chisato und SpringerLink (Online service), Hrsg. Heat Kernels for Elliptic and Sub-elliptic Operators: Methods and Techniques. Boston: Springer Science+Business Media, LLC, 2011.
Den vollen Inhalt der Quelle findenElliptic marching methods and domain decomposition. Boca Raton: CRC Press, 1995.
Den vollen Inhalt der Quelle findenElliptic operators, topology and asymptotic methods. 2. Aufl. Harlow: Longman, 1998.
Den vollen Inhalt der Quelle findenRoe, John. Elliptic operators, topology, and asymptotic methods. Harlow, Essex, England: Longman Scientific & Technical, 1988.
Den vollen Inhalt der Quelle findenNumerical methods for elliptic problems with singularities: Boundary methods and nonconforming combinations. Singapore: World Scientific, 1990.
Den vollen Inhalt der Quelle findenWavelet methods for elliptic partial differential equations. Oxford: Oxford University Press, 2009.
Den vollen Inhalt der Quelle findenWidlund, Olof B. Iterative substructuring methods: the general elliptic case. New York: Courant Institute of Mathematical Sciences, New York University, 1986.
Den vollen Inhalt der Quelle findenAmbrosetti, A. Pertubation methods and semilinear elliptic problems on Rn. Boston, MA: Birkhauser Verlag, 2005.
Den vollen Inhalt der Quelle findenDryja, Maksymilian. Multilevel additive methods for elliptic finite element problems. New York: Courant Institute of Mathematical Sciences, New York University, 1990.
Den vollen Inhalt der Quelle findenAmbrosetti, Antonio, und Andrea Malchiodi. Perturbation Methods and Semilinear Elliptic Problems on Rn. Basel: Birkhäuser Basel, 2006. http://dx.doi.org/10.1007/3-7643-7396-2.
Der volle Inhalt der QuelleNečas, Jindřich. Direct Methods in the Theory of Elliptic Equations. Berlin, Heidelberg: Springer Berlin Heidelberg, 2012. http://dx.doi.org/10.1007/978-3-642-10455-8.
Der volle Inhalt der QuelleSteinbach, Olaf. Numerical Approximation Methods for Elliptic Boundary Value Problems. New York, NY: Springer New York, 2008. http://dx.doi.org/10.1007/978-0-387-68805-3.
Der volle Inhalt der QuelleMethods for analysis of nonlinear elliptic boundary value problems. Providence, R.I: American Mathematical Society, 1994.
Den vollen Inhalt der Quelle findenKunoth, Angela. Wavelet Methods -- Elliptic Boundary Value Problems and Control Problems. Wiesbaden: Vieweg+Teubner Verlag, 2001.
Den vollen Inhalt der Quelle findenLi, Zi-Cai. Numerical methods for elliptic boundary value problems with singularities. Toronto: [s.n.], 1986.
Den vollen Inhalt der Quelle findenNg, Kit Sun. Quadratic Spline Collocation methods for systems of elliptic PDEs. Toronto: University of Toronto, Dept. of Computer Science, 2000.
Den vollen Inhalt der Quelle findenMitchell, William F. Unified multilevel adaptive finite element methods for elliptic problems. Urbana, Ill: Dept. of Computer Science, University of Illinois at Urbana-Champaign, 1988.
Den vollen Inhalt der Quelle findenKunoth, Angela. Wavelet Methods — Elliptic Boundary Value Problems and Control Problems. Wiesbaden: Vieweg+Teubner Verlag, 2001. http://dx.doi.org/10.1007/978-3-322-80027-5.
Der volle Inhalt der QuelleApproximate methods and numerical analysis for elliptic complex equations. Amsterdam, Netherlands: Gordon and Breach Science Publishers, 1999.
Den vollen Inhalt der Quelle findenBöhmer, K. Numerical methods for nonlinear elliptic differential equations: A synopsis. Oxford: Oxford University Press, 2010.
Den vollen Inhalt der Quelle findenWidlund, Olof B. Some Schwarz methods for symmetric and nonsymmetric elliptic problems. New York: Courant Institute of Mathematical Sciences, New York University, 1991.
Den vollen Inhalt der Quelle findenLi, Zi-Cai. Combined methods for elliptic equations with singularities, interfaces, and infinities. Dordrecht: Kluwer Academic Publishers, 1998.
Den vollen Inhalt der Quelle findenAndrea, Malchiodi, Hrsg. Perturbation methods and semilinear elliptic problems on R[superscript n]. Basel, Switzerland: Birkhäuser Verlag, 2006.
Den vollen Inhalt der Quelle findenCenter, Langley Research, Hrsg. Crack-face displacements for embedded elliptic and semi-elliptical surface cracks. Hampton, Va: National Aeronautics and Space Administration, Langley Research Center, 1989.
Den vollen Inhalt der Quelle finden