Inhaltsverzeichnis
Auswahl der wissenschaftlichen Literatur zum Thema „Elliptic method“
Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an
Machen Sie sich mit den Listen der aktuellen Artikel, Bücher, Dissertationen, Berichten und anderer wissenschaftlichen Quellen zum Thema "Elliptic method" bekannt.
Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.
Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.
Zeitschriftenartikel zum Thema "Elliptic method"
Yin, Zhen, Hua Li, Zi Yang Cao, Ou Xie und Yan Li. „Simulation and Experiment of New Longitudinal-Torsional Composite Ultrasonic Elliptical Vibrator“. Advanced Materials Research 338 (September 2011): 79–83. http://dx.doi.org/10.4028/www.scientific.net/amr.338.79.
Der volle Inhalt der QuelleYin, Zhen, Hua Li, Bang Fu Wang und Ke Feng Song. „Study on the Design of Longitudinal-Torsional Composite Ultrasonic Elliptical Vibrator Based on FEM“. Advanced Materials Research 308-310 (August 2011): 341–45. http://dx.doi.org/10.4028/www.scientific.net/amr.308-310.341.
Der volle Inhalt der QuelleNoguchi, Tetsuo, und Tsutomu Ezumi. „OS01W0062 A study about the elliptic inclusion by optical method and finite element method“. Abstracts of ATEM : International Conference on Advanced Technology in Experimental Mechanics : Asian Conference on Experimental Mechanics 2003.2 (2003): _OS01W0062. http://dx.doi.org/10.1299/jsmeatem.2003.2._os01w0062.
Der volle Inhalt der QuelleAIKAWA, Yusuke, Koji NUIDA und Masaaki SHIRASE. „Elliptic Curve Method Using Complex Multiplication Method“. IEICE Transactions on Fundamentals of Electronics, Communications and Computer Sciences E102.A, Nr. 1 (01.01.2019): 74–80. http://dx.doi.org/10.1587/transfun.e102.a.74.
Der volle Inhalt der QuelleTanaka, Naoyuki. „A New Calculation Method of Hertz Elliptical Contact Pressure“. Journal of Tribology 123, Nr. 4 (07.12.2000): 887–89. http://dx.doi.org/10.1115/1.1352745.
Der volle Inhalt der QuelleElías-Zúñiga, Alex. „On The Elliptic Balance Method“. Mathematics and Mechanics of Solids 8, Nr. 3 (Juni 2003): 263–79. http://dx.doi.org/10.1177/1081286503008003002.
Der volle Inhalt der QuelleJingzhi Li, Shanqiang Li und Hongyu Liu. „RESTARTED NONLINEAR CONJUGATE GRADIENT METHOD FOR PARAMETER IDENTIFICATION IN ELLIPTIC SYSTEM“. Eurasian Journal of Mathematical and Computer Applications 1, Nr. 1 (2013): 62–77. http://dx.doi.org/10.32523/2306-3172-2013-1-1-62-77.
Der volle Inhalt der QuelleZHAO, HONG. „ANALYTICAL STUDY ON NONLINEAR DIFFERENTIAL–DIFFERENCE EQUATIONS VIA A NEW METHOD“. Modern Physics Letters B 24, Nr. 08 (30.03.2010): 761–73. http://dx.doi.org/10.1142/s0217984910022846.
Der volle Inhalt der QuelleHlaváček, Ivan. „Domain optimization in $3D$-axisymmetric elliptic problems by dual finite element method“. Applications of Mathematics 35, Nr. 3 (1990): 225–36. http://dx.doi.org/10.21136/am.1990.104407.
Der volle Inhalt der QuelleHlaváček, Ivan. „Penalty method and extrapolation for axisymmetric elliptic problems with Dirichlet boundary conditions“. Applications of Mathematics 35, Nr. 5 (1990): 405–17. http://dx.doi.org/10.21136/am.1990.104420.
Der volle Inhalt der QuelleDissertationen zum Thema "Elliptic method"
Savchuk, Tatyana. „The multiscale finite element method for elliptic problems“. Ann Arbor, Mich. : ProQuest, 2007. http://gateway.proquest.com/openurl?url_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:dissertation&res_dat=xri:pqdiss&rft_dat=xri:pqdiss:3245025.
Der volle Inhalt der QuelleTitle from PDF title page (viewed Mar. 18, 2008). Source: Dissertation Abstracts International, Volume: 67-12, Section: B, page: 7120. Adviser: Zhangxin (John) Chen. Includes bibliographical references.
Déchène, Isabelle. „Quaternion algebras and the graph method for elliptic curves“. Thesis, McGill University, 1998. http://digitool.Library.McGill.CA:80/R/?func=dbin-jump-full&object_id=21537.
Der volle Inhalt der QuelleLoubenets, Alexei. „A new finite element method for elliptic interface problems“. Licentiate thesis, KTH, Numerical Analysis and Computer Science, NADA, 2006. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-3908.
Der volle Inhalt der QuelleA finite element based numerical method for the two-dimensional elliptic interface problems is presented. Due to presence of these interfaces the problem will contain discontinuities in the coefficients and singularities in the right hand side that are represented by delta functionals along the interface. As a result, the solution to the interface problem and its derivatives may have jump discontinuities. The introduced method is specifically designed to handle this features of the solution using non-body fitted grids, i.e. the grids are not aligned with the interfaces.
The main idea is to modify the standard basis function in the vicinity of the interface such that the jump conditions are well approximated. The resulting finite element space is, in general, non-conforming. The interface itself is represented by a set of Lagrangian markers together with a parametric description connecting them. To illustrate the abilities of the method, numerical tests are presented. For all the considered test problems, the introduced method has been shown to have super-linear or second order of convergence. Our approach is also compared with the standard finite element method.
Finally, the method is applied to the interface Stokes problem, where the interface represents an elastic stretched band immersed in fluid. Since we assume the fluid to be homogeneous, the Stokes equations are reduced to a sequence of three Poisson problems that are solved with our method. The numerical results agree well with those found in the literature.
Déchène, Isabelle. „Quaternion algebras and the graph method for elliptic curves“. Thesis, National Library of Canada = Bibliothèque nationale du Canada, 1999. http://www.collectionscanada.ca/obj/s4/f2/dsk1/tape9/PQDD_0024/MQ50750.pdf.
Der volle Inhalt der QuelleElfverson, Daniel. „Discontinuous Galerkin Multiscale Methods for Elliptic Problems“. Thesis, Uppsala universitet, Institutionen för informationsteknologi, 2010. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-138960.
Der volle Inhalt der QuelleGu, Yaguang. „Nonlinear optimized Schwarz preconditioning for heterogeneous elliptic problems“. HKBU Institutional Repository, 2019. https://repository.hkbu.edu.hk/etd_oa/637.
Der volle Inhalt der QuelleBen, Romdhane Mohamed. „Higher-Degree Immersed Finite Elements for Second-Order Elliptic Interface Problems“. Diss., Virginia Tech, 2011. http://hdl.handle.net/10919/39258.
Der volle Inhalt der QuellePh. D.
Alsaedy, Ammar, und Nikolai Tarkhanov. „The method of Fischer-Riesz equations for elliptic boundary value problems“. Universität Potsdam, 2012. http://opus.kobv.de/ubp/volltexte/2012/6179/.
Der volle Inhalt der QuelleBennett, G. N. „A semi-linear elliptic problem arising in the theory of superconductivity“. Thesis, University of Sussex, 2000. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.340827.
Der volle Inhalt der QuelleYang, Zhiyun. „A Cartesian grid method for elliptic boundary value problems in irregular regions /“. Thesis, Connect to this title online; UW restricted, 1996. http://hdl.handle.net/1773/6759.
Der volle Inhalt der QuelleBücher zum Thema "Elliptic method"
Bottasso, Carlo L. Discontinuous dual-primal mixed finite elements for elliptic problems. Hampton, Va: National Aeronautics and Space Administration, Langley Research Center, 2000.
Den vollen Inhalt der Quelle findenQuarteroni, Alfio. Domain decomposition preconditioners for the spectral collocation method. Hampton, Va: National Aeronautics and Space Administration, Langley Research Center, Institute for Computer Applications in Science and Engineering, 1988.
Den vollen Inhalt der Quelle findenPomp, Andreas. The boundary-domain integral method for elliptic systems. Berlin: Springer, 1998.
Den vollen Inhalt der Quelle findenda Veiga, Lourenço Beirão, Konstantin Lipnikov und Gianmarco Manzini. The Mimetic Finite Difference Method for Elliptic Problems. Cham: Springer International Publishing, 2014. http://dx.doi.org/10.1007/978-3-319-02663-3.
Der volle Inhalt der QuellePomp, Andreas. The Boundary-Domain Integral Method for Elliptic Systems. Berlin, Heidelberg: Springer Berlin Heidelberg, 1998. http://dx.doi.org/10.1007/bfb0094576.
Der volle Inhalt der QuelleŽeníšek, A. Nonlinear elliptic and evolution problems and their finite element approximations. Herausgegeben von Whiteman J. R. London: Academic Press, 1990.
Den vollen Inhalt der Quelle findenKang, Kab Seok. Covolume-based integrid transfer operator in P1 nonconforming multigrid method. Hampton, VA: Institute for Computer Applications in Science and Engineering, NASA Langley Research Center, 2002.
Den vollen Inhalt der Quelle findenSchweitzer, Marc Alexander. A Parallel Multilevel Partition of Unity Method for Elliptic Partial Differential Equations. Berlin, Heidelberg: Springer Berlin Heidelberg, 2003.
Den vollen Inhalt der Quelle findenSchweitzer, Marc Alexander. A Parallel Multilevel Partition of Unity Method for Elliptic Partial Differential Equations. Berlin, Heidelberg: Springer Berlin Heidelberg, 2003. http://dx.doi.org/10.1007/978-3-642-59325-3.
Der volle Inhalt der QuelleNumerical approximation methods for elliptic boundary value problems: Finite and boundary elements. United States: Springer Verlag, 2008.
Den vollen Inhalt der Quelle findenBuchteile zum Thema "Elliptic method"
Calin, Ovidiu, Der-Chen Chang, Kenro Furutani und Chisato Iwasaki. „The Geometric Method“. In Heat Kernels for Elliptic and Sub-elliptic Operators, 27–70. Boston: Birkhäuser Boston, 2010. http://dx.doi.org/10.1007/978-0-8176-4995-1_3.
Der volle Inhalt der QuelleHackbusch, Wolfgang. „The Finite-Element Method“. In Elliptic Differential Equations, 181–262. Berlin, Heidelberg: Springer Berlin Heidelberg, 2017. http://dx.doi.org/10.1007/978-3-662-54961-2_8.
Der volle Inhalt der QuelleCalin, Ovidiu, Der-Chen Chang, Kenro Furutani und Chisato Iwasaki. „The Fourier Transform Method“. In Heat Kernels for Elliptic and Sub-elliptic Operators, 75–88. Boston: Birkhäuser Boston, 2010. http://dx.doi.org/10.1007/978-0-8176-4995-1_5.
Der volle Inhalt der QuelleCalin, Ovidiu, Der-Chen Chang, Kenro Furutani und Chisato Iwasaki. „The Eigenfunction Expansion Method“. In Heat Kernels for Elliptic and Sub-elliptic Operators, 89–104. Boston: Birkhäuser Boston, 2010. http://dx.doi.org/10.1007/978-0-8176-4995-1_6.
Der volle Inhalt der QuelleCalin, Ovidiu, Der-Chen Chang, Kenro Furutani und Chisato Iwasaki. „The Stochastic Analysis Method“. In Heat Kernels for Elliptic and Sub-elliptic Operators, 145–97. Boston: Birkhäuser Boston, 2010. http://dx.doi.org/10.1007/978-0-8176-4995-1_8.
Der volle Inhalt der QuelleHackbusch, Wolfgang. „The Method of Finite Elements“. In Elliptic Differential Equations, 161–207. Berlin, Heidelberg: Springer Berlin Heidelberg, 1992. http://dx.doi.org/10.1007/978-3-642-11490-8_8.
Der volle Inhalt der QuelleDolejší, Vít, und Miloslav Feistauer. „DGM for Elliptic Problems“. In Discontinuous Galerkin Method, 27–84. Cham: Springer International Publishing, 2015. http://dx.doi.org/10.1007/978-3-319-19267-3_2.
Der volle Inhalt der QuelleKuzin, I., und S. Pohozaev. „Classical Variational Method“. In Entire Solutions of Semilinear Elliptic Equations, 5–37. Basel: Birkhäuser Basel, 1997. http://dx.doi.org/10.1007/978-3-0348-9250-6_2.
Der volle Inhalt der QuelleZimmermann, Paul. „Elliptic Curve Method for Factoring“. In Encyclopedia of Cryptography and Security, 401–3. Boston, MA: Springer US, 2011. http://dx.doi.org/10.1007/978-1-4419-5906-5_401.
Der volle Inhalt der Quelleda Veiga, Lourenço Beirão, Konstantin Lipnikov und Gianmarco Manzini. „Model elliptic problems“. In The Mimetic Finite Difference Method for Elliptic Problems, 3–40. Cham: Springer International Publishing, 2014. http://dx.doi.org/10.1007/978-3-319-02663-3_1.
Der volle Inhalt der QuelleKonferenzberichte zum Thema "Elliptic method"
Chang, Kung-Ching. „Heat method in nonlinear elliptic equations“. In Proceedings of the ICM 2002 Satellite Conference on Nonlinear Functional Analysis. WORLD SCIENTIFIC, 2003. http://dx.doi.org/10.1142/9789812704283_0007.
Der volle Inhalt der QuelleZhang, Ning, und Xiaotong Fu. „Ternary Method in Elliptic Curve Scalar Multiplication“. In 2013 International Conference on Intelligent Networking and Collaborative Systems (INCoS). IEEE, 2013. http://dx.doi.org/10.1109/incos.2013.93.
Der volle Inhalt der QuelleWARFIELD, M. „A zonal equation method for parabolic-elliptic flows“. In 24th Aerospace Sciences Meeting. Reston, Virigina: American Institute of Aeronautics and Astronautics, 1986. http://dx.doi.org/10.2514/6.1986-153.
Der volle Inhalt der QuelleMazzarella, Giuseppe, Giorgio Montisci und Alessandro Fanti. „Method-of-Moment Analysis of Slender Elliptic Slots“. In 2019 IEEE International Conference on Microwaves, Antennas, Communications and Electronic Systems (COMCAS). IEEE, 2019. http://dx.doi.org/10.1109/comcas44984.2019.8958409.
Der volle Inhalt der QuelleSun, Jiahui, Shichun Pang und Mingjuan Ma. „Mixed finite volume method for elliptic equations problems“. In 2016 International Conference on Advances in Energy, Environment and Chemical Science. Paris, France: Atlantis Press, 2016. http://dx.doi.org/10.2991/aeecs-16.2016.24.
Der volle Inhalt der QuelleČerná, Dana, Václav Finek, Theodore E. Simos, George Psihoyios, Ch Tsitouras und Zacharias Anastassi. „Adaptive Wavelet Method for Fourth-Order Elliptic Problems“. In NUMERICAL ANALYSIS AND APPLIED MATHEMATICS ICNAAM 2011: International Conference on Numerical Analysis and Applied Mathematics. AIP, 2011. http://dx.doi.org/10.1063/1.3637940.
Der volle Inhalt der QuelleMa, Jinlin, Kai Zhu, Ziping Ma, Meng Wei und Li Shi. „Elliptic Feature Recognition and Positioning Method for Disc Parts“. In 2019 14th International Conference on Computer Science & Education (ICCSE). IEEE, 2019. http://dx.doi.org/10.1109/iccse.2019.8845486.
Der volle Inhalt der QuelleSatonaka, Takami, und Keiichi Uchimura. „Elliptic Metric K-NN Method with Asymptotic MDL Measure“. In 2006 International Conference on Image Processing. IEEE, 2006. http://dx.doi.org/10.1109/icip.2006.312864.
Der volle Inhalt der QuelleBin Yu. „Method to generate elliptic curves based on CM algorithm“. In 2010 IEEE International Conference on Information Theory and Information Security (ICITIS). IEEE, 2010. http://dx.doi.org/10.1109/icitis.2010.5688754.
Der volle Inhalt der QuelleFang, Xianjin, Gaoming Yang und Yanting Wu. „Research on the Underlying Method of Elliptic Curve Cryptography“. In 2017 4th International Conference on Information Science and Control Engineering (ICISCE). IEEE, 2017. http://dx.doi.org/10.1109/icisce.2017.139.
Der volle Inhalt der QuelleBerichte der Organisationen zum Thema "Elliptic method"
Ferretta, T. A parallel multigrid method for solving elliptic partial differential equations. Office of Scientific and Technical Information (OSTI), Februar 1989. http://dx.doi.org/10.2172/7055158.
Der volle Inhalt der QuelleManzini, Gianmarco. Annotations on the virtual element method for second-order elliptic problems. Office of Scientific and Technical Information (OSTI), Januar 2017. http://dx.doi.org/10.2172/1338710.
Der volle Inhalt der QuelleGlover, Joseph. Positive Solutions of Systems of Semilinear Elliptic Equations: The Pendulum Method,. Fort Belvoir, VA: Defense Technical Information Center, Januar 1986. http://dx.doi.org/10.21236/ada171939.
Der volle Inhalt der QuelleManzini, Gianmarco. The Mimetic Finite Element Method and the Virtual Element Method for elliptic problems with arbitrary regularity. Office of Scientific and Technical Information (OSTI), Juli 2012. http://dx.doi.org/10.2172/1046508.
Der volle Inhalt der QuelleSharan, M., E. J. Kansa und S. Gupta. Application of multiquadric method for numerical solution of elliptic partial differential equations. Office of Scientific and Technical Information (OSTI), Januar 1994. http://dx.doi.org/10.2172/10156506.
Der volle Inhalt der QuelleManke, J. A tensor product b-spline method for 3D multi-block elliptic grid generation. Office of Scientific and Technical Information (OSTI), Dezember 1988. http://dx.doi.org/10.2172/5536897.
Der volle Inhalt der QuelleHu, Xin, Guang Lin, Thomas Y. Hou und Pengchong Yan. An Adaptive ANOVA-Based Data-Driven Stochastic Method for Elliptic PDE with Random Coefficients. Fort Belvoir, VA: Defense Technical Information Center, Januar 2012. http://dx.doi.org/10.21236/ada560090.
Der volle Inhalt der QuelleIto, K., M. Kroller und K. Kunisch. A Numerical Study of an Augmented Lagrangian Method for the Estimation of Parameters in Elliptic Systems. Fort Belvoir, VA: Defense Technical Information Center, Januar 1989. http://dx.doi.org/10.21236/ada208658.
Der volle Inhalt der QuelleWerner, L., und F. Odeh. Numerical Methods for Stiff Ordinary and Elliptic Partial Differential Equations. Fort Belvoir, VA: Defense Technical Information Center, Februar 1985. http://dx.doi.org/10.21236/ada153247.
Der volle Inhalt der QuelleAdjerid, Slimane, Mohammed Aiffa und Joseph E. Flaherty. High-Order Finite Element Methods for Singularly-Perturbed Elliptic and Parabolic Problems. Fort Belvoir, VA: Defense Technical Information Center, Dezember 1993. http://dx.doi.org/10.21236/ada290410.
Der volle Inhalt der Quelle